This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | ||
| cnmpt2t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) | ||
| Assertion | cnmpt2t | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 4 | cnmpt2t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) | |
| 6 | df-ov | ⊢ ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 7 | 5 6 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) = ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) ) |
| 8 | fveq2 | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) | |
| 9 | df-ov | ⊢ ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 10 | 8 9 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) = ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) ) |
| 11 | 7 10 | opeq12d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 = 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 ) |
| 12 | 11 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 ) |
| 13 | nfcv | ⊢ Ⅎ 𝑥 𝑢 | |
| 14 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 15 | nfcv | ⊢ Ⅎ 𝑥 𝑣 | |
| 16 | 13 14 15 | nfov | ⊢ Ⅎ 𝑥 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) |
| 17 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 18 | 13 17 15 | nfov | ⊢ Ⅎ 𝑥 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) |
| 19 | 16 18 | nfop | ⊢ Ⅎ 𝑥 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 |
| 20 | nfcv | ⊢ Ⅎ 𝑦 𝑢 | |
| 21 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 22 | nfcv | ⊢ Ⅎ 𝑦 𝑣 | |
| 23 | 20 21 22 | nfov | ⊢ Ⅎ 𝑦 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) |
| 24 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 25 | 20 24 22 | nfov | ⊢ Ⅎ 𝑦 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) |
| 26 | 23 25 | nfop | ⊢ Ⅎ 𝑦 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 |
| 27 | nfcv | ⊢ Ⅎ 𝑢 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 | |
| 28 | nfcv | ⊢ Ⅎ 𝑣 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 | |
| 29 | oveq12 | ⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) = ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) ) | |
| 30 | oveq12 | ⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) = ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) ) | |
| 31 | 29 30 | opeq12d | ⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = 𝑦 ) → 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 = 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) |
| 32 | 19 26 27 28 31 | cbvmpo | ⊢ ( 𝑢 ∈ 𝑋 , 𝑣 ∈ 𝑌 ↦ 〈 ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑣 ) , ( 𝑢 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑣 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) |
| 33 | 12 32 | eqtri | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) |
| 34 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 35 | 1 2 34 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 36 | toponuni | ⊢ ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝐽 ×t 𝐾 ) ) | |
| 37 | mpteq1 | ⊢ ( ( 𝑋 × 𝑌 ) = ∪ ( 𝐽 ×t 𝐾 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ) |
| 39 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) | |
| 40 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) | |
| 41 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) → 𝐿 ∈ Top ) | |
| 42 | 3 41 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 43 | toptopon2 | ⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) | |
| 44 | 42 43 | sylib | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
| 45 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) | |
| 46 | 35 44 3 45 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 47 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 48 | 47 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
| 49 | 46 48 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ) |
| 50 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) ) | |
| 51 | 49 50 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) ) |
| 52 | 51 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ∪ 𝐿 ) |
| 53 | 47 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ ∪ 𝐿 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 54 | 39 40 52 53 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 55 | cntop2 | ⊢ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) → 𝑀 ∈ Top ) | |
| 56 | 4 55 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 57 | toptopon2 | ⊢ ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) | |
| 58 | 56 57 | sylib | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 59 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) | |
| 60 | 35 58 4 59 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 61 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 62 | 61 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝑀 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 63 | 60 62 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝑀 ) |
| 64 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ∪ 𝑀 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ∪ 𝑀 ) ) | |
| 65 | 63 64 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ∪ 𝑀 ) ) |
| 66 | 65 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ∪ 𝑀 ) |
| 67 | 61 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐵 ∈ ∪ 𝑀 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) = 𝐵 ) |
| 68 | 39 40 66 67 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) = 𝐵 ) |
| 69 | 54 68 | opeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 70 | 69 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) , ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 71 | 33 38 70 | 3eqtr3a | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 72 | eqid | ⊢ ∪ ( 𝐽 ×t 𝐾 ) = ∪ ( 𝐽 ×t 𝐾 ) | |
| 73 | eqid | ⊢ ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) = ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) | |
| 74 | 72 73 | txcnmpt | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) → ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |
| 75 | 3 4 74 | syl2anc | ⊢ ( 𝜑 → ( 𝑧 ∈ ∪ ( 𝐽 ×t 𝐾 ) ↦ 〈 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 𝑧 ) , ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ‘ 𝑧 ) 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |
| 76 | 71 75 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |