This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of inner product; analogue of cnmpt22f which cannot be used directly because .i is not a function. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1ip.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| cnmpt1ip.c | ⊢ 𝐶 = ( TopOpen ‘ ℂfld ) | ||
| cnmpt1ip.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| cnmpt1ip.r | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | ||
| cnmpt1ip.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpt2ip.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt2ip.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) | ||
| cnmpt2ip.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) | ||
| Assertion | cnmpt2ip | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 , 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1ip.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 2 | cnmpt1ip.c | ⊢ 𝐶 = ( TopOpen ‘ ℂfld ) | |
| 3 | cnmpt1ip.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 4 | cnmpt1ip.r | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | |
| 5 | cnmpt1ip.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 6 | cnmpt2ip.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 7 | cnmpt2ip.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) | |
| 8 | cnmpt2ip.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) | |
| 9 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 10 | 5 6 9 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 11 | cphngp | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) | |
| 12 | ngptps | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp ) | |
| 13 | 4 11 12 | 3syl | ⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 15 | 14 1 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 16 | 13 15 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 17 | cnf2 | ⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) | |
| 18 | 10 16 7 17 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 19 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 20 | 19 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝑊 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 21 | 18 20 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
| 22 | 21 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
| 23 | 22 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
| 24 | cnf2 | ⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) | |
| 25 | 10 16 8 24 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 26 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 27 | 26 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 28 | 25 27 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 29 | 28 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 30 | 29 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 31 | eqid | ⊢ ( ·if ‘ 𝑊 ) = ( ·if ‘ 𝑊 ) | |
| 32 | 14 3 31 | ipfval | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝑊 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
| 33 | 23 30 32 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
| 34 | 33 | 3impa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
| 35 | 34 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 , 𝐵 ) ) ) |
| 36 | 31 1 2 | ipcn | ⊢ ( 𝑊 ∈ ℂPreHil → ( ·if ‘ 𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) ) |
| 37 | 4 36 | syl | ⊢ ( 𝜑 → ( ·if ‘ 𝑊 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐶 ) ) |
| 38 | 5 6 7 8 37 | cnmpt22f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·if ‘ 𝑊 ) 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐶 ) ) |
| 39 | 35 38 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 , 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐶 ) ) |