This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hial2eq2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) ) | |
| 2 | ax-his1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐵 ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ) | |
| 3 | 1 2 | eqeqan12d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ) ) |
| 4 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐴 ) ∈ ℂ ) |
| 6 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ·ih 𝐵 ) ∈ ℂ ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐵 ) ∈ ℂ ) |
| 8 | cj11 | ⊢ ( ( ( 𝑥 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝑥 ·ih 𝐵 ) ∈ ℂ ) → ( ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ↔ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ) ) | |
| 9 | 5 7 8 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( ∗ ‘ ( 𝑥 ·ih 𝐴 ) ) = ( ∗ ‘ ( 𝑥 ·ih 𝐵 ) ) ↔ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ) ) |
| 10 | 3 9 | bitr2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) ) |
| 11 | 10 | anandirs | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) ) |
| 12 | 11 | ralbidva | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ) ) |
| 13 | hial2eq | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝐴 ·ih 𝑥 ) = ( 𝐵 ·ih 𝑥 ) ↔ 𝐴 = 𝐵 ) ) | |
| 14 | 12 13 | bitrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih 𝐴 ) = ( 𝑥 ·ih 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |