This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnflf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) | |
| 2 | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | flimelbas | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 5 | 4 | ssriv | ⊢ ( 𝐽 fLim 𝑓 ) ⊆ ∪ 𝐽 |
| 6 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → dom 𝐹 = 𝑋 ) |
| 8 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑋 = ∪ 𝐽 ) |
| 10 | 7 9 | eqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → dom 𝐹 = ∪ 𝐽 ) |
| 11 | 5 10 | sseqtrrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐽 fLim 𝑓 ) ⊆ dom 𝐹 ) |
| 12 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ ( 𝐽 fLim 𝑓 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) | |
| 13 | 2 11 12 | syl2an2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ↔ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) |
| 15 | 14 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∀ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |
| 16 | 1 15 | bitr4d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 “ ( 𝐽 fLim 𝑓 ) ) ⊆ ( ( 𝐾 fLimf 𝑓 ) ‘ 𝐹 ) ) ) ) |