This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnfcom3c . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom3c.s | |- S = dom ( _om CNF A ) |
|
| cnfcom3c.f | |- F = ( `' ( _om CNF A ) ` b ) |
||
| cnfcom3c.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cnfcom3c.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
||
| cnfcom3c.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
||
| cnfcom3c.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
||
| cnfcom3c.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
||
| cnfcom3c.w | |- W = ( G ` U. dom G ) |
||
| cnfcom3c.x | |- X = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( F ` W ) .o v ) +o u ) ) |
||
| cnfcom3c.y | |- Y = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o u ) +o v ) ) |
||
| cnfcom3c.n | |- N = ( ( X o. `' Y ) o. ( T ` dom G ) ) |
||
| cnfcom3c.l | |- L = ( b e. ( _om ^o A ) |-> N ) |
||
| Assertion | cnfcom3clem | |- ( A e. On -> E. g A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( g ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom3c.s | |- S = dom ( _om CNF A ) |
|
| 2 | cnfcom3c.f | |- F = ( `' ( _om CNF A ) ` b ) |
|
| 3 | cnfcom3c.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 4 | cnfcom3c.h | |- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
|
| 5 | cnfcom3c.t | |- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
|
| 6 | cnfcom3c.m | |- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
|
| 7 | cnfcom3c.k | |- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
|
| 8 | cnfcom3c.w | |- W = ( G ` U. dom G ) |
|
| 9 | cnfcom3c.x | |- X = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( F ` W ) .o v ) +o u ) ) |
|
| 10 | cnfcom3c.y | |- Y = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o u ) +o v ) ) |
|
| 11 | cnfcom3c.n | |- N = ( ( X o. `' Y ) o. ( T ` dom G ) ) |
|
| 12 | cnfcom3c.l | |- L = ( b e. ( _om ^o A ) |-> N ) |
|
| 13 | simp1 | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> A e. On ) |
|
| 14 | omelon | |- _om e. On |
|
| 15 | 1onn | |- 1o e. _om |
|
| 16 | ondif2 | |- ( _om e. ( On \ 2o ) <-> ( _om e. On /\ 1o e. _om ) ) |
|
| 17 | 14 15 16 | mpbir2an | |- _om e. ( On \ 2o ) |
| 18 | oeworde | |- ( ( _om e. ( On \ 2o ) /\ A e. On ) -> A C_ ( _om ^o A ) ) |
|
| 19 | 17 13 18 | sylancr | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> A C_ ( _om ^o A ) ) |
| 20 | simp2 | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> b e. A ) |
|
| 21 | 19 20 | sseldd | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> b e. ( _om ^o A ) ) |
| 22 | simp3 | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> _om C_ b ) |
|
| 23 | 1 13 21 2 3 4 5 6 7 8 22 | cnfcom3lem | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> W e. ( On \ 1o ) ) |
| 24 | 1 13 21 2 3 4 5 6 7 8 22 9 10 11 | cnfcom3 | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> N : b -1-1-onto-> ( _om ^o W ) ) |
| 25 | f1of | |- ( N : b -1-1-onto-> ( _om ^o W ) -> N : b --> ( _om ^o W ) ) |
|
| 26 | 24 25 | syl | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> N : b --> ( _om ^o W ) ) |
| 27 | 26 20 | fexd | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> N e. _V ) |
| 28 | 12 | fvmpt2 | |- ( ( b e. ( _om ^o A ) /\ N e. _V ) -> ( L ` b ) = N ) |
| 29 | 21 27 28 | syl2anc | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> ( L ` b ) = N ) |
| 30 | 29 | f1oeq1d | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> ( ( L ` b ) : b -1-1-onto-> ( _om ^o W ) <-> N : b -1-1-onto-> ( _om ^o W ) ) ) |
| 31 | 24 30 | mpbird | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> ( L ` b ) : b -1-1-onto-> ( _om ^o W ) ) |
| 32 | oveq2 | |- ( w = W -> ( _om ^o w ) = ( _om ^o W ) ) |
|
| 33 | 32 | f1oeq3d | |- ( w = W -> ( ( L ` b ) : b -1-1-onto-> ( _om ^o w ) <-> ( L ` b ) : b -1-1-onto-> ( _om ^o W ) ) ) |
| 34 | 33 | rspcev | |- ( ( W e. ( On \ 1o ) /\ ( L ` b ) : b -1-1-onto-> ( _om ^o W ) ) -> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) |
| 35 | 23 31 34 | syl2anc | |- ( ( A e. On /\ b e. A /\ _om C_ b ) -> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) |
| 36 | 35 | 3expia | |- ( ( A e. On /\ b e. A ) -> ( _om C_ b -> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| 37 | 36 | ralrimiva | |- ( A e. On -> A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| 38 | ovex | |- ( _om ^o A ) e. _V |
|
| 39 | 38 | mptex | |- ( b e. ( _om ^o A ) |-> N ) e. _V |
| 40 | 12 39 | eqeltri | |- L e. _V |
| 41 | nfmpt1 | |- F/_ b ( b e. ( _om ^o A ) |-> N ) |
|
| 42 | 12 41 | nfcxfr | |- F/_ b L |
| 43 | 42 | nfeq2 | |- F/ b g = L |
| 44 | fveq1 | |- ( g = L -> ( g ` b ) = ( L ` b ) ) |
|
| 45 | 44 | f1oeq1d | |- ( g = L -> ( ( g ` b ) : b -1-1-onto-> ( _om ^o w ) <-> ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| 46 | 45 | rexbidv | |- ( g = L -> ( E. w e. ( On \ 1o ) ( g ` b ) : b -1-1-onto-> ( _om ^o w ) <-> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| 47 | 46 | imbi2d | |- ( g = L -> ( ( _om C_ b -> E. w e. ( On \ 1o ) ( g ` b ) : b -1-1-onto-> ( _om ^o w ) ) <-> ( _om C_ b -> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) ) |
| 48 | 43 47 | ralbid | |- ( g = L -> ( A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( g ` b ) : b -1-1-onto-> ( _om ^o w ) ) <-> A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) ) |
| 49 | 40 48 | spcev | |- ( A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( L ` b ) : b -1-1-onto-> ( _om ^o w ) ) -> E. g A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( g ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| 50 | 37 49 | syl | |- ( A e. On -> E. g A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( g ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |