This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function applying continuous extension to a given function f . (Contributed by Thierry Arnoux, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnextval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 CnExt 𝐾 ) = ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑗 = 𝐽 → ( ∪ 𝑘 ↑pm ∪ 𝑗 ) = ( ∪ 𝑘 ↑pm ∪ 𝐽 ) ) |
| 3 | fveq2 | ⊢ ( 𝑗 = 𝐽 → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) ) | |
| 4 | 3 | fveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) = ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ) |
| 5 | fveq2 | ⊢ ( 𝑗 = 𝐽 → ( nei ‘ 𝑗 ) = ( nei ‘ 𝐽 ) ) | |
| 6 | 5 | fveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 7 | 6 | oveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) |
| 8 | 7 | oveq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) = ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) = ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) |
| 10 | 9 | xpeq2d | ⊢ ( 𝑗 = 𝐽 → ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
| 11 | 4 10 | iuneq12d | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
| 12 | 2 11 | mpteq12dv | ⊢ ( 𝑗 = 𝐽 → ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝑗 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) = ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |
| 13 | unieq | ⊢ ( 𝑘 = 𝐾 → ∪ 𝑘 = ∪ 𝐾 ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑘 = 𝐾 → ( ∪ 𝑘 ↑pm ∪ 𝐽 ) = ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ) |
| 15 | oveq1 | ⊢ ( 𝑘 = 𝐾 → ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ) | |
| 16 | 15 | fveq1d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) |
| 17 | 16 | xpeq2d | ⊢ ( 𝑘 = 𝐾 → ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
| 18 | 17 | iuneq2d | ⊢ ( 𝑘 = 𝐾 → ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) |
| 19 | 14 18 | mpteq12dv | ⊢ ( 𝑘 = 𝐾 → ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) = ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |
| 20 | df-cnext | ⊢ CnExt = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑓 ∈ ( ∪ 𝑘 ↑pm ∪ 𝑗 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝑗 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑘 fLimf ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) | |
| 21 | ovex | ⊢ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ∈ V | |
| 22 | 21 | mptex | ⊢ ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ∈ V |
| 23 | 12 19 20 22 | ovmpo | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 CnExt 𝐾 ) = ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |