This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextfrel.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| cnextfrel.2 | ⊢ 𝐵 = ∪ 𝐾 | ||
| Assertion | cnextrel | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → Rel ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfrel.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| 2 | cnextfrel.2 | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | relxp | ⊢ Rel ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) | |
| 4 | 3 | rgenw | ⊢ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) Rel ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 5 | reliun | ⊢ ( Rel ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) Rel ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) | |
| 6 | 4 5 | mpbir | ⊢ Rel ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 7 | 1 2 | cnextfval | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 8 | 7 | releqd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → ( Rel ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ Rel ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 9 | 6 8 | mpbiri | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → Rel ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |