This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnconn.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| Assertion | cnconn | ⊢ ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnconn.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 2 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top ) |
| 4 | df-ne | ⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅ ) | |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝐽 ∈ Conn ) | |
| 7 | simpl3 | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 8 | simprl | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ) | |
| 9 | 8 | elin1d | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ∈ 𝐾 ) |
| 10 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 12 | elssuni | ⊢ ( 𝑥 ∈ 𝐾 → 𝑥 ⊆ ∪ 𝐾 ) | |
| 13 | 9 12 | syl | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ⊆ ∪ 𝐾 ) |
| 14 | 13 1 | sseqtrrdi | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ⊆ 𝑌 ) |
| 15 | simpl2 | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 16 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ran 𝐹 = 𝑌 ) |
| 18 | 14 17 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ⊆ ran 𝐹 ) |
| 19 | df-rn | ⊢ ran 𝐹 = dom ◡ 𝐹 | |
| 20 | 18 19 | sseqtrdi | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ⊆ dom ◡ 𝐹 ) |
| 21 | sseqin2 | ⊢ ( 𝑥 ⊆ dom ◡ 𝐹 ↔ ( dom ◡ 𝐹 ∩ 𝑥 ) = 𝑥 ) | |
| 22 | 20 21 | sylib | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( dom ◡ 𝐹 ∩ 𝑥 ) = 𝑥 ) |
| 23 | simprr | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ≠ ∅ ) | |
| 24 | 22 23 | eqnetrd | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( dom ◡ 𝐹 ∩ 𝑥 ) ≠ ∅ ) |
| 25 | imadisj | ⊢ ( ( ◡ 𝐹 “ 𝑥 ) = ∅ ↔ ( dom ◡ 𝐹 ∩ 𝑥 ) = ∅ ) | |
| 26 | 25 | necon3bii | ⊢ ( ( ◡ 𝐹 “ 𝑥 ) ≠ ∅ ↔ ( dom ◡ 𝐹 ∩ 𝑥 ) ≠ ∅ ) |
| 27 | 24 26 | sylibr | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( ◡ 𝐹 “ 𝑥 ) ≠ ∅ ) |
| 28 | 8 | elin2d | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) |
| 29 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 30 | 7 28 29 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 31 | 5 6 11 27 30 | connclo | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( ◡ 𝐹 “ 𝑥 ) = ∪ 𝐽 ) |
| 32 | 5 1 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 33 | fdm | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → dom 𝐹 = ∪ 𝐽 ) | |
| 34 | 7 32 33 | 3syl | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 35 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 36 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 37 | 15 35 36 | 3syl | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → dom 𝐹 = 𝑋 ) |
| 38 | 31 34 37 | 3eqtr2d | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( ◡ 𝐹 “ 𝑥 ) = 𝑋 ) |
| 39 | 38 | imaeq2d | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝐹 “ 𝑋 ) ) |
| 40 | foimacnv | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑥 ⊆ 𝑌 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = 𝑥 ) | |
| 41 | 15 14 40 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = 𝑥 ) |
| 42 | foima | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( 𝐹 “ 𝑋 ) = 𝑌 ) | |
| 43 | 15 42 | syl | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → ( 𝐹 “ 𝑋 ) = 𝑌 ) |
| 44 | 39 41 43 | 3eqtr3d | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ∧ 𝑥 ≠ ∅ ) ) → 𝑥 = 𝑌 ) |
| 45 | 44 | expr | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ) → ( 𝑥 ≠ ∅ → 𝑥 = 𝑌 ) ) |
| 46 | 4 45 | biimtrrid | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ) → ( ¬ 𝑥 = ∅ → 𝑥 = 𝑌 ) ) |
| 47 | 46 | orrd | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ) → ( 𝑥 = ∅ ∨ 𝑥 = 𝑌 ) ) |
| 48 | vex | ⊢ 𝑥 ∈ V | |
| 49 | 48 | elpr | ⊢ ( 𝑥 ∈ { ∅ , 𝑌 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = 𝑌 ) ) |
| 50 | 47 49 | sylibr | ⊢ ( ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ) → 𝑥 ∈ { ∅ , 𝑌 } ) |
| 51 | 50 | ex | ⊢ ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) → 𝑥 ∈ { ∅ , 𝑌 } ) ) |
| 52 | 51 | ssrdv | ⊢ ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ⊆ { ∅ , 𝑌 } ) |
| 53 | 1 | isconn2 | ⊢ ( 𝐾 ∈ Conn ↔ ( 𝐾 ∈ Top ∧ ( 𝐾 ∩ ( Clsd ‘ 𝐾 ) ) ⊆ { ∅ , 𝑌 } ) ) |
| 54 | 3 52 53 | sylanbrc | ⊢ ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Conn ) |