This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnconn.2 | |- Y = U. K |
|
| Assertion | cnconn | |- ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) -> K e. Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnconn.2 | |- Y = U. K |
|
| 2 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 3 | 2 | 3ad2ant3 | |- ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) -> K e. Top ) |
| 4 | df-ne | |- ( x =/= (/) <-> -. x = (/) ) |
|
| 5 | eqid | |- U. J = U. J |
|
| 6 | simpl1 | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> J e. Conn ) |
|
| 7 | simpl3 | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> F e. ( J Cn K ) ) |
|
| 8 | simprl | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x e. ( K i^i ( Clsd ` K ) ) ) |
|
| 9 | 8 | elin1d | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x e. K ) |
| 10 | cnima | |- ( ( F e. ( J Cn K ) /\ x e. K ) -> ( `' F " x ) e. J ) |
|
| 11 | 7 9 10 | syl2anc | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( `' F " x ) e. J ) |
| 12 | elssuni | |- ( x e. K -> x C_ U. K ) |
|
| 13 | 9 12 | syl | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x C_ U. K ) |
| 14 | 13 1 | sseqtrrdi | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x C_ Y ) |
| 15 | simpl2 | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> F : X -onto-> Y ) |
|
| 16 | forn | |- ( F : X -onto-> Y -> ran F = Y ) |
|
| 17 | 15 16 | syl | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ran F = Y ) |
| 18 | 14 17 | sseqtrrd | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x C_ ran F ) |
| 19 | df-rn | |- ran F = dom `' F |
|
| 20 | 18 19 | sseqtrdi | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x C_ dom `' F ) |
| 21 | sseqin2 | |- ( x C_ dom `' F <-> ( dom `' F i^i x ) = x ) |
|
| 22 | 20 21 | sylib | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( dom `' F i^i x ) = x ) |
| 23 | simprr | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x =/= (/) ) |
|
| 24 | 22 23 | eqnetrd | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( dom `' F i^i x ) =/= (/) ) |
| 25 | imadisj | |- ( ( `' F " x ) = (/) <-> ( dom `' F i^i x ) = (/) ) |
|
| 26 | 25 | necon3bii | |- ( ( `' F " x ) =/= (/) <-> ( dom `' F i^i x ) =/= (/) ) |
| 27 | 24 26 | sylibr | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( `' F " x ) =/= (/) ) |
| 28 | 8 | elin2d | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x e. ( Clsd ` K ) ) |
| 29 | cnclima | |- ( ( F e. ( J Cn K ) /\ x e. ( Clsd ` K ) ) -> ( `' F " x ) e. ( Clsd ` J ) ) |
|
| 30 | 7 28 29 | syl2anc | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( `' F " x ) e. ( Clsd ` J ) ) |
| 31 | 5 6 11 27 30 | connclo | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( `' F " x ) = U. J ) |
| 32 | 5 1 | cnf | |- ( F e. ( J Cn K ) -> F : U. J --> Y ) |
| 33 | fdm | |- ( F : U. J --> Y -> dom F = U. J ) |
|
| 34 | 7 32 33 | 3syl | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> dom F = U. J ) |
| 35 | fof | |- ( F : X -onto-> Y -> F : X --> Y ) |
|
| 36 | fdm | |- ( F : X --> Y -> dom F = X ) |
|
| 37 | 15 35 36 | 3syl | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> dom F = X ) |
| 38 | 31 34 37 | 3eqtr2d | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( `' F " x ) = X ) |
| 39 | 38 | imaeq2d | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( F " ( `' F " x ) ) = ( F " X ) ) |
| 40 | foimacnv | |- ( ( F : X -onto-> Y /\ x C_ Y ) -> ( F " ( `' F " x ) ) = x ) |
|
| 41 | 15 14 40 | syl2anc | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( F " ( `' F " x ) ) = x ) |
| 42 | foima | |- ( F : X -onto-> Y -> ( F " X ) = Y ) |
|
| 43 | 15 42 | syl | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> ( F " X ) = Y ) |
| 44 | 39 41 43 | 3eqtr3d | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ ( x e. ( K i^i ( Clsd ` K ) ) /\ x =/= (/) ) ) -> x = Y ) |
| 45 | 44 | expr | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ x e. ( K i^i ( Clsd ` K ) ) ) -> ( x =/= (/) -> x = Y ) ) |
| 46 | 4 45 | biimtrrid | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ x e. ( K i^i ( Clsd ` K ) ) ) -> ( -. x = (/) -> x = Y ) ) |
| 47 | 46 | orrd | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ x e. ( K i^i ( Clsd ` K ) ) ) -> ( x = (/) \/ x = Y ) ) |
| 48 | vex | |- x e. _V |
|
| 49 | 48 | elpr | |- ( x e. { (/) , Y } <-> ( x = (/) \/ x = Y ) ) |
| 50 | 47 49 | sylibr | |- ( ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) /\ x e. ( K i^i ( Clsd ` K ) ) ) -> x e. { (/) , Y } ) |
| 51 | 50 | ex | |- ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) -> ( x e. ( K i^i ( Clsd ` K ) ) -> x e. { (/) , Y } ) ) |
| 52 | 51 | ssrdv | |- ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) -> ( K i^i ( Clsd ` K ) ) C_ { (/) , Y } ) |
| 53 | 1 | isconn2 | |- ( K e. Conn <-> ( K e. Top /\ ( K i^i ( Clsd ` K ) ) C_ { (/) , Y } ) ) |
| 54 | 3 52 53 | sylanbrc | |- ( ( J e. Conn /\ F : X -onto-> Y /\ F e. ( J Cn K ) ) -> K e. Conn ) |