This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the image of a closure. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnclsi.1 | |- X = U. J |
|
| Assertion | cnclsi | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( F " ( ( cls ` J ) ` S ) ) C_ ( ( cls ` K ) ` ( F " S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnclsi.1 | |- X = U. J |
|
| 2 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 3 | 2 | adantr | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> J e. Top ) |
| 4 | cnvimass | |- ( `' F " ( F " S ) ) C_ dom F |
|
| 5 | eqid | |- U. K = U. K |
|
| 6 | 1 5 | cnf | |- ( F e. ( J Cn K ) -> F : X --> U. K ) |
| 7 | 6 | adantr | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> F : X --> U. K ) |
| 8 | 4 7 | fssdm | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( `' F " ( F " S ) ) C_ X ) |
| 9 | simpr | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> S C_ X ) |
|
| 10 | 7 | fdmd | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> dom F = X ) |
| 11 | 9 10 | sseqtrrd | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> S C_ dom F ) |
| 12 | sseqin2 | |- ( S C_ dom F <-> ( dom F i^i S ) = S ) |
|
| 13 | 11 12 | sylib | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( dom F i^i S ) = S ) |
| 14 | dminss | |- ( dom F i^i S ) C_ ( `' F " ( F " S ) ) |
|
| 15 | 13 14 | eqsstrrdi | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> S C_ ( `' F " ( F " S ) ) ) |
| 16 | 1 | clsss | |- ( ( J e. Top /\ ( `' F " ( F " S ) ) C_ X /\ S C_ ( `' F " ( F " S ) ) ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` ( `' F " ( F " S ) ) ) ) |
| 17 | 3 8 15 16 | syl3anc | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` ( `' F " ( F " S ) ) ) ) |
| 18 | imassrn | |- ( F " S ) C_ ran F |
|
| 19 | 7 | frnd | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ran F C_ U. K ) |
| 20 | 18 19 | sstrid | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( F " S ) C_ U. K ) |
| 21 | 5 | cncls2i | |- ( ( F e. ( J Cn K ) /\ ( F " S ) C_ U. K ) -> ( ( cls ` J ) ` ( `' F " ( F " S ) ) ) C_ ( `' F " ( ( cls ` K ) ` ( F " S ) ) ) ) |
| 22 | 20 21 | syldan | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( ( cls ` J ) ` ( `' F " ( F " S ) ) ) C_ ( `' F " ( ( cls ` K ) ` ( F " S ) ) ) ) |
| 23 | 17 22 | sstrd | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ ( `' F " ( ( cls ` K ) ` ( F " S ) ) ) ) |
| 24 | 7 | ffund | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> Fun F ) |
| 25 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 26 | 2 25 | sylan | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 27 | 26 10 | sseqtrrd | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ dom F ) |
| 28 | funimass3 | |- ( ( Fun F /\ ( ( cls ` J ) ` S ) C_ dom F ) -> ( ( F " ( ( cls ` J ) ` S ) ) C_ ( ( cls ` K ) ` ( F " S ) ) <-> ( ( cls ` J ) ` S ) C_ ( `' F " ( ( cls ` K ) ` ( F " S ) ) ) ) ) |
|
| 29 | 24 27 28 | syl2anc | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( ( F " ( ( cls ` J ) ` S ) ) C_ ( ( cls ` K ) ` ( F " S ) ) <-> ( ( cls ` J ) ` S ) C_ ( `' F " ( ( cls ` K ) ` ( F " S ) ) ) ) ) |
| 30 | 23 29 | mpbird | |- ( ( F e. ( J Cn K ) /\ S C_ X ) -> ( F " ( ( cls ` J ) ` S ) ) C_ ( ( cls ` K ) ` ( F " S ) ) ) |