This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncls2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 2 | 1 | 3expia | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 3 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑌 → 𝑥 ⊆ 𝑌 ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑌 ) → 𝑥 ⊆ 𝑌 ) |
| 5 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
| 7 | 4 6 | sseqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑌 ) → 𝑥 ⊆ ∪ 𝐾 ) |
| 8 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 9 | 8 | cncls2i | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑥 ⊆ ∪ 𝐾 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) |
| 10 | 9 | expcom | ⊢ ( 𝑥 ⊆ ∪ 𝐾 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) |
| 11 | 7 10 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝒫 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) |
| 12 | 11 | ralrimdva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ∀ 𝑥 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) |
| 13 | 2 12 | jcad | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) ) |
| 14 | 8 | cldss2 | ⊢ ( Clsd ‘ 𝐾 ) ⊆ 𝒫 ∪ 𝐾 |
| 15 | 5 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑌 = ∪ 𝐾 ) |
| 16 | 15 | pweqd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝒫 𝑌 = 𝒫 ∪ 𝐾 ) |
| 17 | 14 16 | sseqtrrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( Clsd ‘ 𝐾 ) ⊆ 𝒫 𝑌 ) |
| 18 | 17 | sseld | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐾 ) → 𝑥 ∈ 𝒫 𝑌 ) ) |
| 19 | 18 | imim1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑥 ∈ 𝒫 𝑌 → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( Clsd ‘ 𝐾 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) ) |
| 20 | cldcls | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐾 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) = 𝑥 ) | |
| 21 | 20 | ad2antll | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) = 𝑥 ) |
| 22 | 21 | imaeq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 23 | 22 | sseq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → ( ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 24 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → 𝐽 ∈ Top ) |
| 26 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 27 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → dom 𝐹 = 𝑋 ) |
| 29 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 31 | 28 30 | eqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 32 | 26 31 | sseqtrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ ∪ 𝐽 ) |
| 33 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 34 | 33 | iscld4 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑥 ) ⊆ ∪ 𝐽 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 35 | 25 32 34 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 36 | 23 35 | bitr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ) ) → ( ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 37 | 36 | expr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑥 ∈ ( Clsd ‘ 𝐾 ) → ( ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 38 | 37 | pm5.74d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑥 ∈ ( Clsd ‘ 𝐾 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 39 | 19 38 | sylibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑥 ∈ 𝒫 𝑌 → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( Clsd ‘ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 40 | 39 | ralimdv2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑥 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 41 | 40 | imdistanda | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 42 | iscncl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) | |
| 43 | 41 42 | sylibrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 44 | 13 43 | impbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝒫 𝑌 ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) ) |