This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncficcgt0.f | |- F = ( x e. ( A [,] B ) |-> C ) |
|
| cncficcgt0.a | |- ( ph -> A e. RR ) |
||
| cncficcgt0.b | |- ( ph -> B e. RR ) |
||
| cncficcgt0.aleb | |- ( ph -> A <_ B ) |
||
| cncficcgt0.fcn | |- ( ph -> F e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) ) |
||
| Assertion | cncficcgt0 | |- ( ph -> E. y e. RR+ A. x e. ( A [,] B ) y <_ ( abs ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncficcgt0.f | |- F = ( x e. ( A [,] B ) |-> C ) |
|
| 2 | cncficcgt0.a | |- ( ph -> A e. RR ) |
|
| 3 | cncficcgt0.b | |- ( ph -> B e. RR ) |
|
| 4 | cncficcgt0.aleb | |- ( ph -> A <_ B ) |
|
| 5 | cncficcgt0.fcn | |- ( ph -> F e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) ) |
|
| 6 | cncff | |- ( F e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) -> F : ( A [,] B ) --> ( RR \ { 0 } ) ) |
|
| 7 | ffun | |- ( F : ( A [,] B ) --> ( RR \ { 0 } ) -> Fun F ) |
|
| 8 | 5 6 7 | 3syl | |- ( ph -> Fun F ) |
| 9 | 8 | adantr | |- ( ( ph /\ c e. ( A [,] B ) ) -> Fun F ) |
| 10 | simpr | |- ( ( ph /\ c e. ( A [,] B ) ) -> c e. ( A [,] B ) ) |
|
| 11 | 5 6 | syl | |- ( ph -> F : ( A [,] B ) --> ( RR \ { 0 } ) ) |
| 12 | 11 | fdmd | |- ( ph -> dom F = ( A [,] B ) ) |
| 13 | 12 | eqcomd | |- ( ph -> ( A [,] B ) = dom F ) |
| 14 | 13 | adantr | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 15 | 10 14 | eleqtrd | |- ( ( ph /\ c e. ( A [,] B ) ) -> c e. dom F ) |
| 16 | fvco | |- ( ( Fun F /\ c e. dom F ) -> ( ( abs o. F ) ` c ) = ( abs ` ( F ` c ) ) ) |
|
| 17 | 9 15 16 | syl2anc | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) = ( abs ` ( F ` c ) ) ) |
| 18 | 11 | ffvelcdmda | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) e. ( RR \ { 0 } ) ) |
| 19 | 18 | eldifad | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) e. RR ) |
| 20 | 19 | recnd | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) e. CC ) |
| 21 | eldifsni | |- ( ( F ` c ) e. ( RR \ { 0 } ) -> ( F ` c ) =/= 0 ) |
|
| 22 | 18 21 | syl | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( F ` c ) =/= 0 ) |
| 23 | 20 22 | absrpcld | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( abs ` ( F ` c ) ) e. RR+ ) |
| 24 | 17 23 | eqeltrd | |- ( ( ph /\ c e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) e. RR+ ) |
| 25 | 24 | adantr | |- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> ( ( abs o. F ) ` c ) e. RR+ ) |
| 26 | nfv | |- F/ x ( ph /\ c e. ( A [,] B ) ) |
|
| 27 | nfcv | |- F/_ x ( A [,] B ) |
|
| 28 | nfcv | |- F/_ x abs |
|
| 29 | nfmpt1 | |- F/_ x ( x e. ( A [,] B ) |-> C ) |
|
| 30 | 1 29 | nfcxfr | |- F/_ x F |
| 31 | 28 30 | nfco | |- F/_ x ( abs o. F ) |
| 32 | nfcv | |- F/_ x c |
|
| 33 | 31 32 | nffv | |- F/_ x ( ( abs o. F ) ` c ) |
| 34 | nfcv | |- F/_ x <_ |
|
| 35 | nfcv | |- F/_ x d |
|
| 36 | 31 35 | nffv | |- F/_ x ( ( abs o. F ) ` d ) |
| 37 | 33 34 36 | nfbr | |- F/ x ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) |
| 38 | 27 37 | nfralw | |- F/ x A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) |
| 39 | 26 38 | nfan | |- F/ x ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) |
| 40 | fveq2 | |- ( d = x -> ( ( abs o. F ) ` d ) = ( ( abs o. F ) ` x ) ) |
|
| 41 | 40 | breq2d | |- ( d = x -> ( ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) <-> ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` x ) ) ) |
| 42 | 41 | rspccva | |- ( ( A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` x ) ) |
| 43 | 42 | adantll | |- ( ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` x ) ) |
| 44 | absf | |- abs : CC --> RR |
|
| 45 | 44 | a1i | |- ( ph -> abs : CC --> RR ) |
| 46 | difss | |- ( RR \ { 0 } ) C_ RR |
|
| 47 | ax-resscn | |- RR C_ CC |
|
| 48 | 46 47 | sstri | |- ( RR \ { 0 } ) C_ CC |
| 49 | 48 | a1i | |- ( ph -> ( RR \ { 0 } ) C_ CC ) |
| 50 | 11 49 | fssd | |- ( ph -> F : ( A [,] B ) --> CC ) |
| 51 | fcompt | |- ( ( abs : CC --> RR /\ F : ( A [,] B ) --> CC ) -> ( abs o. F ) = ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) ) |
|
| 52 | 45 50 51 | syl2anc | |- ( ph -> ( abs o. F ) = ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) ) |
| 53 | nfcv | |- F/_ x z |
|
| 54 | 30 53 | nffv | |- F/_ x ( F ` z ) |
| 55 | 28 54 | nffv | |- F/_ x ( abs ` ( F ` z ) ) |
| 56 | nfcv | |- F/_ z ( abs ` ( F ` x ) ) |
|
| 57 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 58 | 57 | fveq2d | |- ( z = x -> ( abs ` ( F ` z ) ) = ( abs ` ( F ` x ) ) ) |
| 59 | 55 56 58 | cbvmpt | |- ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) = ( x e. ( A [,] B ) |-> ( abs ` ( F ` x ) ) ) |
| 60 | 59 | a1i | |- ( ph -> ( z e. ( A [,] B ) |-> ( abs ` ( F ` z ) ) ) = ( x e. ( A [,] B ) |-> ( abs ` ( F ` x ) ) ) ) |
| 61 | 1 | a1i | |- ( ph -> F = ( x e. ( A [,] B ) |-> C ) ) |
| 62 | 61 11 | feq1dd | |- ( ph -> ( x e. ( A [,] B ) |-> C ) : ( A [,] B ) --> ( RR \ { 0 } ) ) |
| 63 | 62 | fvmptelcdm | |- ( ( ph /\ x e. ( A [,] B ) ) -> C e. ( RR \ { 0 } ) ) |
| 64 | 61 63 | fvmpt2d | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) = C ) |
| 65 | 64 | fveq2d | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( F ` x ) ) = ( abs ` C ) ) |
| 66 | 65 | mpteq2dva | |- ( ph -> ( x e. ( A [,] B ) |-> ( abs ` ( F ` x ) ) ) = ( x e. ( A [,] B ) |-> ( abs ` C ) ) ) |
| 67 | 52 60 66 | 3eqtrd | |- ( ph -> ( abs o. F ) = ( x e. ( A [,] B ) |-> ( abs ` C ) ) ) |
| 68 | 48 63 | sselid | |- ( ( ph /\ x e. ( A [,] B ) ) -> C e. CC ) |
| 69 | 68 | abscld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` C ) e. RR ) |
| 70 | 67 69 | fvmpt2d | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` C ) ) |
| 71 | 70 | ad4ant14 | |- ( ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` C ) ) |
| 72 | 43 71 | breqtrd | |- ( ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) |
| 73 | 72 | ex | |- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> ( x e. ( A [,] B ) -> ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) ) |
| 74 | 39 73 | ralrimi | |- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> A. x e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) |
| 75 | 33 | nfeq2 | |- F/ x y = ( ( abs o. F ) ` c ) |
| 76 | breq1 | |- ( y = ( ( abs o. F ) ` c ) -> ( y <_ ( abs ` C ) <-> ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) ) |
|
| 77 | 75 76 | ralbid | |- ( y = ( ( abs o. F ) ` c ) -> ( A. x e. ( A [,] B ) y <_ ( abs ` C ) <-> A. x e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) ) |
| 78 | 77 | rspcev | |- ( ( ( ( abs o. F ) ` c ) e. RR+ /\ A. x e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( abs ` C ) ) -> E. y e. RR+ A. x e. ( A [,] B ) y <_ ( abs ` C ) ) |
| 79 | 25 74 78 | syl2anc | |- ( ( ( ph /\ c e. ( A [,] B ) ) /\ A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) -> E. y e. RR+ A. x e. ( A [,] B ) y <_ ( abs ` C ) ) |
| 80 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 81 | cncfss | |- ( ( ( RR \ { 0 } ) C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) C_ ( ( A [,] B ) -cn-> CC ) ) |
|
| 82 | 49 80 81 | syl2anc | |- ( ph -> ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) C_ ( ( A [,] B ) -cn-> CC ) ) |
| 83 | 82 5 | sseldd | |- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 84 | abscncf | |- abs e. ( CC -cn-> RR ) |
|
| 85 | 84 | a1i | |- ( ph -> abs e. ( CC -cn-> RR ) ) |
| 86 | 83 85 | cncfco | |- ( ph -> ( abs o. F ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 87 | 2 3 4 86 | evthicc | |- ( ph -> ( E. a e. ( A [,] B ) A. b e. ( A [,] B ) ( ( abs o. F ) ` b ) <_ ( ( abs o. F ) ` a ) /\ E. c e. ( A [,] B ) A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) ) |
| 88 | 87 | simprd | |- ( ph -> E. c e. ( A [,] B ) A. d e. ( A [,] B ) ( ( abs o. F ) ` c ) <_ ( ( abs o. F ) ` d ) ) |
| 89 | 79 88 | r19.29a | |- ( ph -> E. y e. RR+ A. x e. ( A [,] B ) y <_ ( abs ` C ) ) |