This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfcompt2.xph | ⊢ Ⅎ 𝑥 𝜑 | |
| cncfcompt2.ab | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) | ||
| cncfcompt2.cd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∈ ( 𝐶 –cn→ 𝐸 ) ) | ||
| cncfcompt2.bc | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
| cncfcompt2.st | ⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) | ||
| Assertion | cncfcompt2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ∈ ( 𝐴 –cn→ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcompt2.xph | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | cncfcompt2.ab | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| 3 | cncfcompt2.cd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∈ ( 𝐶 –cn→ 𝐸 ) ) | |
| 4 | cncfcompt2.bc | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 5 | cncfcompt2.st | ⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) | |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
| 7 | cncff | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ 𝐵 ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ 𝐵 ) |
| 9 | 8 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝐵 ) |
| 10 | 6 9 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ 𝐶 ) |
| 11 | 10 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑅 ∈ 𝐶 ) ) |
| 12 | 1 11 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐶 ) |
| 13 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) | |
| 14 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) = ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ) | |
| 15 | 12 13 14 5 | fmptcof | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 16 | 15 | eqcomd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) = ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) ) |
| 17 | cncfrss | ⊢ ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∈ ( 𝐶 –cn→ 𝐸 ) → 𝐶 ⊆ ℂ ) | |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → 𝐶 ⊆ ℂ ) |
| 19 | cncfss | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) ⊆ ( 𝐴 –cn→ 𝐶 ) ) | |
| 20 | 4 18 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 –cn→ 𝐵 ) ⊆ ( 𝐴 –cn→ 𝐶 ) ) |
| 21 | 20 2 | sseldd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ∈ ( 𝐴 –cn→ 𝐶 ) ) |
| 22 | 21 3 | cncfco | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐶 ↦ 𝑆 ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) ∈ ( 𝐴 –cn→ 𝐸 ) ) |
| 23 | 16 22 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ∈ ( 𝐴 –cn→ 𝐸 ) ) |