This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite cmpcov for the cover { y e. J | ph } . (Contributed by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cmpcov2 | ⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | dfss3 | ⊢ ( 𝑋 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) | |
| 3 | elunirab | ⊢ ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) | |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
| 5 | 2 4 | sylbbr | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → 𝑋 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) |
| 6 | ssrab2 | ⊢ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝐽 | |
| 7 | 6 | unissi | ⊢ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ ∪ 𝐽 |
| 8 | 7 1 | sseqtrri | ⊢ ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝑋 |
| 9 | 8 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝑋 ) |
| 10 | 5 9 | eqssd | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → 𝑋 = ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) |
| 11 | 1 | cmpcov | ⊢ ( ( 𝐽 ∈ Comp ∧ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ⊆ 𝐽 ∧ 𝑋 = ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) → ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
| 12 | 6 11 | mp3an2 | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑋 = ∪ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ) → ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
| 13 | 10 12 | sylan2 | ⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ) |
| 14 | ssrab | ⊢ ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ↔ ( 𝑠 ⊆ 𝐽 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) | |
| 15 | 14 | anbi1i | ⊢ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ∧ 𝑋 = ∪ 𝑠 ) ) |
| 16 | an32 | ⊢ ( ( ( 𝑠 ⊆ 𝐽 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑠 ) ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) | |
| 17 | anass | ⊢ ( ( ( 𝑠 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑠 ) ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ↔ ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) | |
| 18 | 15 16 17 | 3bitri | ⊢ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
| 19 | 18 | anbi1i | ⊢ ( ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ∧ 𝑠 ∈ Fin ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ∧ 𝑠 ∈ Fin ) ) |
| 20 | an32 | ⊢ ( ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑋 = ∪ 𝑠 ) ∧ 𝑠 ∈ Fin ) ) | |
| 21 | an32 | ⊢ ( ( ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ∧ 𝑠 ∈ Fin ) ) | |
| 22 | 19 20 21 | 3bitr4i | ⊢ ( ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
| 23 | elfpw | ⊢ ( 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) ↔ ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ) | |
| 24 | 23 | anbi1i | ⊢ ( ( 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( ( 𝑠 ⊆ { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∧ 𝑠 ∈ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ) |
| 25 | elfpw | ⊢ ( 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ↔ ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ) | |
| 26 | 25 | anbi1i | ⊢ ( ( 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ↔ ( ( 𝑠 ⊆ 𝐽 ∧ 𝑠 ∈ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
| 27 | 22 24 26 | 3bitr4i | ⊢ ( ( 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑠 ) ↔ ( 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) ) |
| 28 | 27 | rexbii2 | ⊢ ( ∃ 𝑠 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ 𝜑 } ∩ Fin ) 𝑋 = ∪ 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) |
| 29 | 13 28 | sylib | ⊢ ( ( 𝐽 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝐽 ∩ Fin ) ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑦 ∈ 𝑠 𝜑 ) ) |