This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | cmbr3i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | cmcmi | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) |
| 4 | 2 1 | cmbr2i | ⊢ ( 𝐵 𝐶ℋ 𝐴 ↔ 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 5 | 3 4 | bitri | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 6 | ineq2 | ⊢ ( 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) ) | |
| 7 | inass | ⊢ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝐴 ∩ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) | |
| 8 | 2 1 | chjcomi | ⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 9 | 8 | ineq2i | ⊢ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 10 | 1 2 | chabs2i | ⊢ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 |
| 11 | 9 10 | eqtri | ⊢ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = 𝐴 |
| 12 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 13 | 2 12 | chjcomi | ⊢ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 14 | 11 13 | ineq12i | ⊢ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 15 | 7 14 | eqtr3i | ⊢ ( 𝐴 ∩ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 16 | 6 15 | eqtr2di | ⊢ ( 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 17 | 5 16 | sylbi | ⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 18 | inss1 | ⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ⊆ 𝐴 | |
| 19 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 20 | 1 19 | chincli | ⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 21 | 20 1 | pjoml2i | ⊢ ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ⊆ 𝐴 → ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ) = 𝐴 ) |
| 22 | 18 21 | ax-mp | ⊢ ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ) = 𝐴 |
| 23 | 20 | choccli | ⊢ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 24 | 23 1 | chincli | ⊢ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∈ Cℋ |
| 25 | 20 24 | chjcomi | ⊢ ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ) = ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 26 | 22 25 | eqtr3i | ⊢ 𝐴 = ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 27 | 1 2 | chdmm3i | ⊢ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 28 | 27 | ineq2i | ⊢ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 29 | incom | ⊢ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) | |
| 30 | 28 29 | eqtr3i | ⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) |
| 31 | 30 | eqeq1i | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ↔ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) ) |
| 32 | oveq1 | ⊢ ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) → ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) | |
| 33 | 31 32 | sylbi | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 34 | 26 33 | eqtrid | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 35 | 1 2 | cmbri | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 36 | 34 35 | sylibr | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → 𝐴 𝐶ℋ 𝐵 ) |
| 37 | 17 36 | impbii | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |