This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the commutes relation. Remark in Kalmbach p. 23. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | cmbr2i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | cmcm4i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 6 | 4 5 | cmbri | ⊢ ( ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 7 | eqcom | ⊢ ( 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 ) | |
| 8 | 1 2 | chjcli | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 9 | 1 5 | chjcli | ⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 10 | 8 9 | chincli | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 11 | 10 1 | chcon3i | ⊢ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 ↔ ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 12 | 8 9 | chdmm1i | ⊢ ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 13 | 1 2 | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
| 14 | 1 5 | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 15 | 13 14 | oveq12i | ⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 16 | 12 15 | eqtri | ⊢ ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 17 | 16 | eqeq2i | ⊢ ( ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 18 | 7 11 17 | 3bitrri | ⊢ ( ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 19 | 3 6 18 | 3bitri | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |