This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. Definition in Kalmbach p. 22. (Contributed by NM, 31-Oct-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | pjoml2i | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | inss2 | ⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ⊆ 𝐵 | |
| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 | 4 2 | chincli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ |
| 6 | 1 5 2 | chlubii | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ⊆ 𝐵 ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 ) |
| 7 | 3 6 | mpan2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 ) |
| 8 | 1 5 | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 9 | 8 | ineq2i | ⊢ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) |
| 10 | incom | ⊢ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) | |
| 11 | 10 | ineq1i | ⊢ ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 12 | inass | ⊢ ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) | |
| 13 | 5 | chocini | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = 0ℋ |
| 14 | 11 12 13 | 3eqtr3i | ⊢ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0ℋ |
| 15 | 9 14 | eqtri | ⊢ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0ℋ |
| 16 | 1 5 | chjcli | ⊢ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∈ Cℋ |
| 17 | 2 | chshii | ⊢ 𝐵 ∈ Sℋ |
| 18 | 16 17 | pjomli | ⊢ ( ( ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0ℋ ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) |
| 19 | 7 15 18 | sylancl | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) |