This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | cmbr3i | |- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | 1 2 | cmcmi | |- ( A C_H B <-> B C_H A ) |
| 4 | 2 1 | cmbr2i | |- ( B C_H A <-> B = ( ( B vH A ) i^i ( B vH ( _|_ ` A ) ) ) ) |
| 5 | 3 4 | bitri | |- ( A C_H B <-> B = ( ( B vH A ) i^i ( B vH ( _|_ ` A ) ) ) ) |
| 6 | ineq2 | |- ( B = ( ( B vH A ) i^i ( B vH ( _|_ ` A ) ) ) -> ( A i^i B ) = ( A i^i ( ( B vH A ) i^i ( B vH ( _|_ ` A ) ) ) ) ) |
|
| 7 | inass | |- ( ( A i^i ( B vH A ) ) i^i ( B vH ( _|_ ` A ) ) ) = ( A i^i ( ( B vH A ) i^i ( B vH ( _|_ ` A ) ) ) ) |
|
| 8 | 2 1 | chjcomi | |- ( B vH A ) = ( A vH B ) |
| 9 | 8 | ineq2i | |- ( A i^i ( B vH A ) ) = ( A i^i ( A vH B ) ) |
| 10 | 1 2 | chabs2i | |- ( A i^i ( A vH B ) ) = A |
| 11 | 9 10 | eqtri | |- ( A i^i ( B vH A ) ) = A |
| 12 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 13 | 2 12 | chjcomi | |- ( B vH ( _|_ ` A ) ) = ( ( _|_ ` A ) vH B ) |
| 14 | 11 13 | ineq12i | |- ( ( A i^i ( B vH A ) ) i^i ( B vH ( _|_ ` A ) ) ) = ( A i^i ( ( _|_ ` A ) vH B ) ) |
| 15 | 7 14 | eqtr3i | |- ( A i^i ( ( B vH A ) i^i ( B vH ( _|_ ` A ) ) ) ) = ( A i^i ( ( _|_ ` A ) vH B ) ) |
| 16 | 6 15 | eqtr2di | |- ( B = ( ( B vH A ) i^i ( B vH ( _|_ ` A ) ) ) -> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
| 17 | 5 16 | sylbi | |- ( A C_H B -> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |
| 18 | inss1 | |- ( A i^i ( _|_ ` B ) ) C_ A |
|
| 19 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 20 | 1 19 | chincli | |- ( A i^i ( _|_ ` B ) ) e. CH |
| 21 | 20 1 | pjoml2i | |- ( ( A i^i ( _|_ ` B ) ) C_ A -> ( ( A i^i ( _|_ ` B ) ) vH ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) ) = A ) |
| 22 | 18 21 | ax-mp | |- ( ( A i^i ( _|_ ` B ) ) vH ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) ) = A |
| 23 | 20 | choccli | |- ( _|_ ` ( A i^i ( _|_ ` B ) ) ) e. CH |
| 24 | 23 1 | chincli | |- ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) e. CH |
| 25 | 20 24 | chjcomi | |- ( ( A i^i ( _|_ ` B ) ) vH ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) ) = ( ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) vH ( A i^i ( _|_ ` B ) ) ) |
| 26 | 22 25 | eqtr3i | |- A = ( ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) vH ( A i^i ( _|_ ` B ) ) ) |
| 27 | 1 2 | chdmm3i | |- ( _|_ ` ( A i^i ( _|_ ` B ) ) ) = ( ( _|_ ` A ) vH B ) |
| 28 | 27 | ineq2i | |- ( A i^i ( _|_ ` ( A i^i ( _|_ ` B ) ) ) ) = ( A i^i ( ( _|_ ` A ) vH B ) ) |
| 29 | incom | |- ( A i^i ( _|_ ` ( A i^i ( _|_ ` B ) ) ) ) = ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) |
|
| 30 | 28 29 | eqtr3i | |- ( A i^i ( ( _|_ ` A ) vH B ) ) = ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) |
| 31 | 30 | eqeq1i | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) <-> ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) = ( A i^i B ) ) |
| 32 | oveq1 | |- ( ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) = ( A i^i B ) -> ( ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) vH ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
|
| 33 | 31 32 | sylbi | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> ( ( ( _|_ ` ( A i^i ( _|_ ` B ) ) ) i^i A ) vH ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 34 | 26 33 | eqtrid | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 35 | 1 2 | cmbri | |- ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 36 | 34 35 | sylibr | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) -> A C_H B ) |
| 37 | 17 36 | impbii | |- ( A C_H B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = ( A i^i B ) ) |