This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the commutes relation. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | cmbr4i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | cmbr3i | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 4 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 5 | sseq1 | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) |
| 7 | inss1 | ⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐴 | |
| 8 | 7 | jctl | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) ) |
| 9 | ssin | ⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 11 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 12 | 2 11 | chub2i | ⊢ 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 13 | sslin | ⊢ ( 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 15 | 10 14 | jctir | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
| 16 | eqss | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 18 | 6 17 | impbii | ⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) |
| 19 | 3 18 | bitri | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) |