This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwlkclwwlklem2 | ⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn | ⊢ ( 𝐸 : dom 𝐸 –1-1→ 𝑅 → 𝐸 Fn dom 𝐸 ) | |
| 2 | dffn3 | ⊢ ( 𝐸 Fn dom 𝐸 ↔ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐸 : dom 𝐸 –1-1→ 𝑅 → 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) |
| 4 | lencl | ⊢ ( 𝐹 ∈ Word dom 𝐸 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 5 | ffn | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 6 | fnfz0hash | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
| 8 | ffz0iswrd | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 ∈ Word 𝑉 ) | |
| 9 | lsw | ⊢ ( 𝑃 ∈ Word 𝑉 → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) | |
| 10 | 9 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
| 11 | fvoveq1 | ⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) ) | |
| 12 | 11 | ad4antlr | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) ) |
| 13 | eqcom | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) ) | |
| 14 | nn0cn | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) | |
| 15 | 1cnd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℂ ) | |
| 16 | 14 15 | pncand | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) = ( ♯ ‘ 𝐹 ) ) |
| 17 | 16 | eqcomd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) |
| 18 | 17 | ad4antlr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) |
| 19 | 18 | fveqeq2d | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 20 | 19 | biimpd | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 21 | 13 20 | biimtrid | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 22 | 21 | adantld | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) |
| 24 | 10 12 23 | 3eqtrd | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) |
| 25 | nn0z | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 26 | peano2zm | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) | |
| 27 | 25 26 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) |
| 28 | nn0re | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) | |
| 29 | 28 | lem1d | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) |
| 30 | eluz2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 31 | 27 25 29 30 | syl3anbrc | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 32 | 31 | ad4antlr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 33 | fzoss2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 34 | ssralv | ⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) | |
| 35 | 32 33 34 | 3syl | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 36 | simpr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) | |
| 37 | 36 | adantr | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) |
| 38 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐸 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) | |
| 39 | simpll | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) | |
| 40 | fzossrbm1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 41 | 25 40 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 43 | 42 | sselda | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 44 | 39 43 | ffvelcdmd | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) |
| 45 | 44 | exp31 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) ) |
| 46 | 38 45 | syl | ⊢ ( 𝐹 ∈ Word dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) ) |
| 47 | 46 | adantl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) ) |
| 48 | 47 | imp | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) |
| 49 | 48 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) |
| 50 | 49 | imp | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) |
| 51 | 37 50 | ffvelcdmd | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ran 𝐸 ) |
| 52 | eqcom | ⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 53 | 52 | biimpi | ⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 54 | 53 | eleq1d | ⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ran 𝐸 ) ) |
| 55 | 51 54 | syl5ibrcom | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 56 | 55 | ralimdva | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 57 | 35 56 | syldc | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 58 | 57 | adantr | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
| 59 | 58 | impcom | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) |
| 60 | breq2 | ⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) | |
| 61 | 60 | adantl | ⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 62 | 2re | ⊢ 2 ∈ ℝ | |
| 63 | 62 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 2 ∈ ℝ ) |
| 64 | 1red | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℝ ) | |
| 65 | 63 64 28 | lesubaddd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( ♯ ‘ 𝐹 ) ↔ 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
| 66 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 67 | 66 | breq1i | ⊢ ( ( 2 − 1 ) ≤ ( ♯ ‘ 𝐹 ) ↔ 1 ≤ ( ♯ ‘ 𝐹 ) ) |
| 68 | elnnnn0c | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 69 | 68 | simplbi2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 70 | 67 69 | biimtrid | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 71 | 65 70 | sylbird | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 72 | 71 | adantl | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 74 | 61 73 | sylbid | ⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 75 | 74 | imp | ⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 76 | 75 | adantr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 77 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) | |
| 78 | 76 77 | sylibr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 79 | fzoend | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 80 | 78 79 | syl | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 81 | 2fveq3 | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) | |
| 82 | fveq2 | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 83 | fvoveq1 | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ) | |
| 84 | 82 83 | preq12d | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) |
| 85 | 81 84 | eqeq12d | ⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) ) |
| 86 | 85 | adantl | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) ) |
| 87 | 80 86 | rspcdv | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) ) |
| 88 | 14 15 | npcand | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
| 89 | 88 | ad4antlr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
| 90 | 89 | fveq2d | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 91 | 90 | preq2d | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 92 | 91 | eqeq2d | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 93 | 38 | ad4antlr | ⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) |
| 94 | 71 | com12 | ⊢ ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
| 95 | 60 94 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 96 | 95 | com3r | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 97 | 96 | adantl | ⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
| 98 | 97 | imp31 | ⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
| 99 | 98 77 | sylibr | ⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 100 | 99 79 | syl | ⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 101 | 93 100 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ dom 𝐸 ) |
| 102 | 101 | adantr | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ dom 𝐸 ) |
| 103 | 36 102 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ ran 𝐸 ) |
| 104 | eqcom | ⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) | |
| 105 | 104 | biimpi | ⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 106 | 105 | eleq1d | ⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ ran 𝐸 ) ) |
| 107 | 103 106 | syl5ibrcom | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
| 108 | 92 107 | sylbid | ⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
| 109 | 87 108 | syldc | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
| 110 | 109 | adantr | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
| 111 | 110 | impcom | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) |
| 112 | preq2 | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) | |
| 113 | 112 | eleq1d | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
| 114 | 113 | adantl | ⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
| 115 | 114 | adantl | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
| 116 | 111 115 | mpbird | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) |
| 117 | 24 59 116 | 3jca | ⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
| 118 | 117 | exp41 | ⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
| 119 | 118 | exp41 | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 𝐹 ∈ Word dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) ) |
| 120 | 8 119 | syl | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 ∈ Word dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) ) |
| 121 | 120 | com13 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝐹 ∈ Word dom 𝐸 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) ) |
| 122 | 4 121 | mpcom | ⊢ ( 𝐹 ∈ Word dom 𝐸 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) |
| 123 | 122 | imp | ⊢ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
| 124 | 7 123 | mpd | ⊢ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
| 125 | 124 | expcom | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 ∈ Word dom 𝐸 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
| 126 | 125 | com14 | ⊢ ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( 𝐹 ∈ Word dom 𝐸 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
| 127 | 126 | imp | ⊢ ( ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
| 128 | 127 | impcomd | ⊢ ( ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
| 129 | 3 128 | sylan | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
| 130 | 129 | 3imp | ⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |