This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence with zero-based indices is a word. (Contributed by AV, 31-Jan-2018) (Proof shortened by AV, 13-Oct-2018) (Proof shortened by JJ, 18-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffz0iswrd | ⊢ ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval3 | ⊢ ( 𝐿 ∈ ℤ → ( 0 ... 𝐿 ) = ( 0 ..^ ( 𝐿 + 1 ) ) ) | |
| 2 | 1 | feq2d | ⊢ ( 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ ( 𝐿 + 1 ) ) ⟶ 𝑆 ) ) |
| 3 | iswrdi | ⊢ ( 𝑊 : ( 0 ..^ ( 𝐿 + 1 ) ) ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) | |
| 4 | 2 3 | biimtrdi | ⊢ ( 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) ) |
| 5 | fzn0 | ⊢ ( ( 0 ... 𝐿 ) ≠ ∅ ↔ 𝐿 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 6 | elnn0uz | ⊢ ( 𝐿 ∈ ℕ0 ↔ 𝐿 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 7 | 5 6 | sylbb2 | ⊢ ( ( 0 ... 𝐿 ) ≠ ∅ → 𝐿 ∈ ℕ0 ) |
| 8 | 7 | nn0zd | ⊢ ( ( 0 ... 𝐿 ) ≠ ∅ → 𝐿 ∈ ℤ ) |
| 9 | 8 | necon1bi | ⊢ ( ¬ 𝐿 ∈ ℤ → ( 0 ... 𝐿 ) = ∅ ) |
| 10 | 9 | feq2d | ⊢ ( ¬ 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆 ↔ 𝑊 : ∅ ⟶ 𝑆 ) ) |
| 11 | iswrddm0 | ⊢ ( 𝑊 : ∅ ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) | |
| 12 | 10 11 | biimtrdi | ⊢ ( ¬ 𝐿 ∈ ℤ → ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) ) |
| 13 | 4 12 | pm2.61i | ⊢ ( 𝑊 : ( 0 ... 𝐿 ) ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) |