This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoend | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ..^ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) ) | |
| 2 | elfzoel2 | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℤ ) | |
| 3 | fzoval | ⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 5 | 1 4 | eleqtrd | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 6 | elfzuz3 | ⊢ ( 𝐴 ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 8 | eluzfz2 | ⊢ ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 10 | 9 4 | eleqtrrd | ⊢ ( 𝐴 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐵 − 1 ) ∈ ( 𝐴 ..^ 𝐵 ) ) |