This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 2-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwlkclwwlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clwlkclwwlk.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | clwlkclwwlk2 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ↔ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clwlkclwwlk.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | simp1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐺 ∈ USPGraph ) | |
| 4 | wrdsymb1 | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) | |
| 5 | 4 | s1cld | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ) |
| 6 | ccatcl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ) → ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ∈ Word 𝑉 ) | |
| 7 | 5 6 | syldan | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ∈ Word 𝑉 ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ∈ Word 𝑉 ) |
| 9 | lencl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 10 | 1e2m1 | ⊢ 1 = ( 2 − 1 ) | |
| 11 | 10 | breq1i | ⊢ ( 1 ≤ ( ♯ ‘ 𝑃 ) ↔ ( 2 − 1 ) ≤ ( ♯ ‘ 𝑃 ) ) |
| 12 | 2re | ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℝ ) |
| 14 | 1red | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 1 ∈ ℝ ) | |
| 15 | nn0re | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) | |
| 16 | 13 14 15 | lesubaddd | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ ( ( ♯ ‘ 𝑃 ) + 1 ) ) ) |
| 17 | 11 16 | bitrid | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 1 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ ( ( ♯ ‘ 𝑃 ) + 1 ) ) ) |
| 18 | 9 17 | syl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( 1 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ ( ( ♯ ‘ 𝑃 ) + 1 ) ) ) |
| 19 | 18 | biimpa | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ( ♯ ‘ 𝑃 ) + 1 ) ) |
| 20 | s1len | ⊢ ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) = 1 | |
| 21 | 20 | oveq2i | ⊢ ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑃 ) + 1 ) |
| 22 | 19 21 | breqtrrdi | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) |
| 23 | ccatlen | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) | |
| 24 | 5 23 | syldan | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) |
| 25 | 22 24 | breqtrrd | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) |
| 26 | 25 | 3adant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) |
| 27 | 1 2 | clwlkclwwlk | ⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) → ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ↔ ( ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ∧ ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ ( ClWWalks ‘ 𝐺 ) ) ) ) |
| 28 | 3 8 26 27 | syl3anc | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ↔ ( ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ∧ ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ ( ClWWalks ‘ 𝐺 ) ) ) ) |
| 29 | wrdlenccats1lenm1 | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) = ( ♯ ‘ 𝑃 ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑃 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑃 ) ) ) |
| 32 | simpl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 𝑃 ∈ Word 𝑉 ) | |
| 33 | eqidd | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 𝑃 ) ) | |
| 34 | pfxccatid | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 𝑃 ) ) → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑃 ) ) = 𝑃 ) | |
| 35 | 32 5 33 34 | syl3anc | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑃 ) ) = 𝑃 ) |
| 36 | 31 35 | eqtr2d | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 𝑃 = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ) |
| 37 | 36 | eleq1d | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ ( ClWWalks ‘ 𝐺 ) ) ) |
| 38 | lswccats1fst | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ) | |
| 39 | 38 | biantrurd | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ∧ ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ ( ClWWalks ‘ 𝐺 ) ) ) ) |
| 40 | 37 39 | bitr2d | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ∧ ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ ( ClWWalks ‘ 𝐺 ) ) ↔ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ) |
| 41 | 40 | 3adant1 | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ∧ ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ ( ClWWalks ‘ 𝐺 ) ) ↔ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ) |
| 42 | 28 41 | bitrd | ⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ↔ 𝑃 ∈ ( ClWWalks ‘ 𝐺 ) ) ) |