This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prefix of a concatenation of length of the first concatenated word is the first word itself. (Contributed by Alexander van der Vekens, 20-Sep-2018) (Revised by AV, 10-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxccatid | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 2 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐴 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
| 5 | eleq1 | ⊢ ( 𝑁 = ( ♯ ‘ 𝐴 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ ( ♯ ‘ 𝐴 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ ( ♯ ‘ 𝐴 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) |
| 7 | 4 6 | mpbird | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
| 8 | eqid | ⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐴 ) | |
| 9 | 8 | pfxccatpfx1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( 𝐴 prefix 𝑁 ) ) |
| 10 | 7 9 | syld3an3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = ( 𝐴 prefix 𝑁 ) ) |
| 11 | oveq2 | ⊢ ( 𝑁 = ( ♯ ‘ 𝐴 ) → ( 𝐴 prefix 𝑁 ) = ( 𝐴 prefix ( ♯ ‘ 𝐴 ) ) ) | |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → ( 𝐴 prefix 𝑁 ) = ( 𝐴 prefix ( ♯ ‘ 𝐴 ) ) ) |
| 13 | pfxid | ⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐴 prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → ( 𝐴 prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) |
| 15 | 10 12 14 | 3eqtrd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) prefix 𝑁 ) = 𝐴 ) |