This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 2-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwlkclwwlk.v | |- V = ( Vtx ` G ) |
|
| clwlkclwwlk.e | |- E = ( iEdg ` G ) |
||
| Assertion | clwlkclwwlk2 | |- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( E. f f ( ClWalks ` G ) ( P ++ <" ( P ` 0 ) "> ) <-> P e. ( ClWWalks ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlk.v | |- V = ( Vtx ` G ) |
|
| 2 | clwlkclwwlk.e | |- E = ( iEdg ` G ) |
|
| 3 | simp1 | |- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> G e. USPGraph ) |
|
| 4 | wrdsymb1 | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ` 0 ) e. V ) |
|
| 5 | 4 | s1cld | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> <" ( P ` 0 ) "> e. Word V ) |
| 6 | ccatcl | |- ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word V ) |
|
| 7 | 5 6 | syldan | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word V ) |
| 8 | 7 | 3adant1 | |- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word V ) |
| 9 | lencl | |- ( P e. Word V -> ( # ` P ) e. NN0 ) |
|
| 10 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 11 | 10 | breq1i | |- ( 1 <_ ( # ` P ) <-> ( 2 - 1 ) <_ ( # ` P ) ) |
| 12 | 2re | |- 2 e. RR |
|
| 13 | 12 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 14 | 1red | |- ( ( # ` P ) e. NN0 -> 1 e. RR ) |
|
| 15 | nn0re | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
|
| 16 | 13 14 15 | lesubaddd | |- ( ( # ` P ) e. NN0 -> ( ( 2 - 1 ) <_ ( # ` P ) <-> 2 <_ ( ( # ` P ) + 1 ) ) ) |
| 17 | 11 16 | bitrid | |- ( ( # ` P ) e. NN0 -> ( 1 <_ ( # ` P ) <-> 2 <_ ( ( # ` P ) + 1 ) ) ) |
| 18 | 9 17 | syl | |- ( P e. Word V -> ( 1 <_ ( # ` P ) <-> 2 <_ ( ( # ` P ) + 1 ) ) ) |
| 19 | 18 | biimpa | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( ( # ` P ) + 1 ) ) |
| 20 | s1len | |- ( # ` <" ( P ` 0 ) "> ) = 1 |
|
| 21 | 20 | oveq2i | |- ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + 1 ) |
| 22 | 19 21 | breqtrrdi | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) |
| 23 | ccatlen | |- ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) |
|
| 24 | 5 23 | syldan | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) |
| 25 | 22 24 | breqtrrd | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) ) |
| 26 | 25 | 3adant1 | |- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> 2 <_ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) ) |
| 27 | 1 2 | clwlkclwwlk | |- ( ( G e. USPGraph /\ ( P ++ <" ( P ` 0 ) "> ) e. Word V /\ 2 <_ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) ) -> ( E. f f ( ClWalks ` G ) ( P ++ <" ( P ` 0 ) "> ) <-> ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) ) |
| 28 | 3 8 26 27 | syl3anc | |- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( E. f f ( ClWalks ` G ) ( P ++ <" ( P ` 0 ) "> ) <-> ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) ) |
| 29 | wrdlenccats1lenm1 | |- ( P e. Word V -> ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) = ( # ` P ) ) |
|
| 30 | 29 | oveq2d | |- ( P e. Word V -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) ) |
| 31 | 30 | adantr | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) ) |
| 32 | simpl | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P e. Word V ) |
|
| 33 | eqidd | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) = ( # ` P ) ) |
|
| 34 | pfxccatid | |- ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V /\ ( # ` P ) = ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) = P ) |
|
| 35 | 32 5 33 34 | syl3anc | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( # ` P ) ) = P ) |
| 36 | 31 35 | eqtr2d | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P = ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) ) |
| 37 | 36 | eleq1d | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P e. ( ClWWalks ` G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) |
| 38 | lswccats1fst | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
|
| 39 | 38 | biantrurd | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) <-> ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) ) ) |
| 40 | 37 39 | bitr2d | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) <-> P e. ( ClWWalks ` G ) ) ) |
| 41 | 40 | 3adant1 | |- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) /\ ( ( P ++ <" ( P ` 0 ) "> ) prefix ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) e. ( ClWWalks ` G ) ) <-> P e. ( ClWWalks ` G ) ) ) |
| 42 | 28 41 | bitrd | |- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( E. f f ( ClWalks ` G ) ( P ++ <" ( P ` 0 ) "> ) <-> P e. ( ClWWalks ` G ) ) ) |