This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswccats1fst | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdsymb1 | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) | |
| 2 | lswccats1 | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ ( 𝑃 ‘ 0 ) ∈ 𝑉 ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( 𝑃 ‘ 0 ) ) | |
| 3 | 1 2 | syldan | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( 𝑃 ‘ 0 ) ) |
| 4 | simpl | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 𝑃 ∈ Word 𝑉 ) | |
| 5 | 1 | s1cld | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ) |
| 6 | lencl | ⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) | |
| 7 | elnnnn0c | ⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) ) | |
| 8 | 7 | biimpri | ⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
| 9 | 6 8 | sylan | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
| 10 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ↔ ( ♯ ‘ 𝑃 ) ∈ ℕ ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) |
| 12 | ccatval1 | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 〈“ ( 𝑃 ‘ 0 ) ”〉 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ) → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑃 ‘ 0 ) ) | |
| 13 | 4 5 11 12 | syl3anc | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
| 14 | 3 13 | eqtr4d | ⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑃 ) ) → ( lastS ‘ ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) = ( ( 𝑃 ++ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ) |