This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a nonempty word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdsymb1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 2 | elnnnn0c | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 3 | 2 | biimpri | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 4 | 1 3 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 5 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) | |
| 8 | 6 7 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |