This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for clwlkclwwlkf . (Contributed by AV, 24-May-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwlkclwwlkf.c | ⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } | |
| clwlkclwwlkf.a | ⊢ 𝐴 = ( 1st ‘ 𝑈 ) | ||
| clwlkclwwlkf.b | ⊢ 𝐵 = ( 2nd ‘ 𝑈 ) | ||
| Assertion | clwlkclwwlkflem | ⊢ ( 𝑈 ∈ 𝐶 → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlkf.c | ⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } | |
| 2 | clwlkclwwlkf.a | ⊢ 𝐴 = ( 1st ‘ 𝑈 ) | |
| 3 | clwlkclwwlkf.b | ⊢ 𝐵 = ( 2nd ‘ 𝑈 ) | |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑈 → ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑈 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑤 = 𝑈 → ( 1st ‘ 𝑤 ) = 𝐴 ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑤 = 𝑈 → ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 7 | 6 | breq2d | ⊢ ( 𝑤 = 𝑈 → ( 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) ↔ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 8 | 7 1 | elrab2 | ⊢ ( 𝑈 ∈ 𝐶 ↔ ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 9 | clwlkwlk | ⊢ ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → 𝑈 ∈ ( Walks ‘ 𝐺 ) ) | |
| 10 | wlkop | ⊢ ( 𝑈 ∈ ( Walks ‘ 𝐺 ) → 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 ) | |
| 11 | 2 3 | opeq12i | ⊢ 〈 𝐴 , 𝐵 〉 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 |
| 12 | 11 | eqeq2i | ⊢ ( 𝑈 = 〈 𝐴 , 𝐵 〉 ↔ 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 ) |
| 13 | eleq1 | ⊢ ( 𝑈 = 〈 𝐴 , 𝐵 〉 → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ClWalks ‘ 𝐺 ) ) ) | |
| 14 | df-br | ⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ClWalks ‘ 𝐺 ) ) | |
| 15 | isclwlk | ⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵 ↔ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 16 | wlkcl | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 17 | elnnnn0c | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) | |
| 18 | 17 | a1i | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
| 19 | 16 18 | mpbirand | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) |
| 20 | 19 | bicomd | ⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| 22 | 21 | pm5.32i | ⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ↔ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| 23 | df-3an | ⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ↔ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) | |
| 24 | 22 23 | sylbb2 | ⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| 25 | 24 | ex | ⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
| 26 | 15 25 | sylbi | ⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵 → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
| 27 | 14 26 | sylbir | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
| 28 | 13 27 | biimtrdi | ⊢ ( 𝑈 = 〈 𝐴 , 𝐵 〉 → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) ) |
| 29 | 12 28 | sylbir | ⊢ ( 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) ) |
| 30 | 10 29 | syl | ⊢ ( 𝑈 ∈ ( Walks ‘ 𝐺 ) → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) ) |
| 31 | 9 30 | mpcom | ⊢ ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
| 32 | 31 | imp | ⊢ ( ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| 33 | 8 32 | sylbi | ⊢ ( 𝑈 ∈ 𝐶 → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |