This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an N-star, then any bijection between the vertices is a local isomorphism between the two graphs. (Contributed by AV, 28-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgr3stgrgrlim.n | ⊢ 𝑁 ∈ ℕ0 | |
| clnbgr3stgrgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| clnbgr3stgrgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| Assertion | clnbgr3stgrgrlim | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgr3stgrgrlim.n | ⊢ 𝑁 ∈ ℕ0 | |
| 2 | clnbgr3stgrgrlim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 3 | clnbgr3stgrgrlim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 4 | simp13 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) | |
| 5 | usgruhgr | ⊢ ( 𝐻 ∈ USGraph → 𝐻 ∈ UHGraph ) | |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐻 ∈ UHGraph ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → 𝐻 ∈ UHGraph ) |
| 8 | 3 | clnbgrssvtx | ⊢ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ⊆ 𝑊 |
| 9 | 8 | a1i | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ⊆ 𝑊 ) |
| 10 | 3 | isubgruhgr | ⊢ ( ( 𝐻 ∈ UHGraph ∧ ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ⊆ 𝑊 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ∈ UHGraph ) |
| 11 | 7 9 10 | syl2an2r | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ∈ UHGraph ) |
| 12 | f1of | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 ⟶ 𝑊 ) | |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → 𝐹 : 𝑉 ⟶ 𝑊 ) |
| 14 | 13 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑊 ) |
| 15 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ClNeighbVtx 𝑦 ) = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) = ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 17 | 16 | breq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ↔ ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 18 | 17 | rspcv | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑊 → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 19 | 14 18 | syl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ 𝑥 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 20 | 19 | impancom | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝑥 ∈ 𝑉 → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) |
| 22 | gricsym | ⊢ ( ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ∈ UHGraph → ( ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 23 | 11 21 22 | sylc | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 24 | 23 | anim1ci | ⊢ ( ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 25 | grictr | ⊢ ( ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ( StarGr ‘ 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 27 | 26 | ex | ⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 28 | 27 | ralimdva | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 30 | 29 | com23 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ( ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 31 | 30 | 3imp | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 32 | 2 | fvexi | ⊢ 𝑉 ∈ V |
| 33 | 32 | a1i | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝑉 ∈ V ) |
| 34 | 12 33 | fexd | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 ∈ V ) |
| 35 | 34 | 3anim3i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) → ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V ) ) |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V ) ) |
| 37 | 2 3 | isgrlim | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 ∈ V ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 39 | 4 31 38 | mpbir2and | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑥 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝐻 ISubGr ( 𝐻 ClNeighbVtx 𝑦 ) ) ≃𝑔𝑟 ( StarGr ‘ 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) |