This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022) (Revised by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grictr | ⊢ ( ( 𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇 ) → 𝑅 ≃𝑔𝑟 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | ⊢ ( 𝑅 ≃𝑔𝑟 𝑆 ↔ ( 𝑅 GraphIso 𝑆 ) ≠ ∅ ) | |
| 2 | brgric | ⊢ ( 𝑆 ≃𝑔𝑟 𝑇 ↔ ( 𝑆 GraphIso 𝑇 ) ≠ ∅ ) | |
| 3 | n0 | ⊢ ( ( 𝑅 GraphIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ) | |
| 4 | n0 | ⊢ ( ( 𝑆 GraphIso 𝑇 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ) | |
| 5 | exdistrv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ) ↔ ( ∃ 𝑔 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ) ) | |
| 6 | grimco | ⊢ ( ( 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ∧ 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 GraphIso 𝑇 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 GraphIso 𝑇 ) ) |
| 8 | brgrici | ⊢ ( ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 GraphIso 𝑇 ) → 𝑅 ≃𝑔𝑟 𝑇 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ) → 𝑅 ≃𝑔𝑟 𝑇 ) |
| 10 | 9 | exlimivv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ) → 𝑅 ≃𝑔𝑟 𝑇 ) |
| 11 | 5 10 | sylbir | ⊢ ( ( ∃ 𝑔 𝑔 ∈ ( 𝑅 GraphIso 𝑆 ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑆 GraphIso 𝑇 ) ) → 𝑅 ≃𝑔𝑟 𝑇 ) |
| 12 | 3 4 11 | syl2anb | ⊢ ( ( ( 𝑅 GraphIso 𝑆 ) ≠ ∅ ∧ ( 𝑆 GraphIso 𝑇 ) ≠ ∅ ) → 𝑅 ≃𝑔𝑟 𝑇 ) |
| 13 | 1 2 12 | syl2anb | ⊢ ( ( 𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇 ) → 𝑅 ≃𝑔𝑟 𝑇 ) |