This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an N-star, then any bijection between the vertices is a local isomorphism between the two graphs. (Contributed by AV, 28-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgr3stgrgrlim.n | |- N e. NN0 |
|
| clnbgr3stgrgrlim.v | |- V = ( Vtx ` G ) |
||
| clnbgr3stgrgrlim.w | |- W = ( Vtx ` H ) |
||
| Assertion | clnbgr3stgrgrlim | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> F e. ( G GraphLocIso H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgr3stgrgrlim.n | |- N e. NN0 |
|
| 2 | clnbgr3stgrgrlim.v | |- V = ( Vtx ` G ) |
|
| 3 | clnbgr3stgrgrlim.w | |- W = ( Vtx ` H ) |
|
| 4 | simp13 | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> F : V -1-1-onto-> W ) |
|
| 5 | usgruhgr | |- ( H e. USGraph -> H e. UHGraph ) |
|
| 6 | 5 | 3ad2ant2 | |- ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) -> H e. UHGraph ) |
| 7 | 6 | adantr | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> H e. UHGraph ) |
| 8 | 3 | clnbgrssvtx | |- ( H ClNeighbVtx ( F ` x ) ) C_ W |
| 9 | 8 | a1i | |- ( ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( H ClNeighbVtx ( F ` x ) ) C_ W ) |
| 10 | 3 | isubgruhgr | |- ( ( H e. UHGraph /\ ( H ClNeighbVtx ( F ` x ) ) C_ W ) -> ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) e. UHGraph ) |
| 11 | 7 9 10 | syl2an2r | |- ( ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) e. UHGraph ) |
| 12 | f1of | |- ( F : V -1-1-onto-> W -> F : V --> W ) |
|
| 13 | 12 | 3ad2ant3 | |- ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) -> F : V --> W ) |
| 14 | 13 | ffvelcdmda | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ x e. V ) -> ( F ` x ) e. W ) |
| 15 | oveq2 | |- ( y = ( F ` x ) -> ( H ClNeighbVtx y ) = ( H ClNeighbVtx ( F ` x ) ) ) |
|
| 16 | 15 | oveq2d | |- ( y = ( F ` x ) -> ( H ISubGr ( H ClNeighbVtx y ) ) = ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) |
| 17 | 16 | breq1d | |- ( y = ( F ` x ) -> ( ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) <-> ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ~=gr ( StarGr ` N ) ) ) |
| 18 | 17 | rspcv | |- ( ( F ` x ) e. W -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ~=gr ( StarGr ` N ) ) ) |
| 19 | 14 18 | syl | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ x e. V ) -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ~=gr ( StarGr ` N ) ) ) |
| 20 | 19 | impancom | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> ( x e. V -> ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ~=gr ( StarGr ` N ) ) ) |
| 21 | 20 | imp | |- ( ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ~=gr ( StarGr ` N ) ) |
| 22 | gricsym | |- ( ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) e. UHGraph -> ( ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ~=gr ( StarGr ` N ) -> ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) |
|
| 23 | 11 21 22 | sylc | |- ( ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) |
| 24 | 23 | anim1ci | |- ( ( ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) /\ ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) ) -> ( ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) |
| 25 | grictr | |- ( ( ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ ( StarGr ` N ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) -> ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) |
|
| 26 | 24 25 | syl | |- ( ( ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) /\ ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) ) -> ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) |
| 27 | 26 | ex | |- ( ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) /\ x e. V ) -> ( ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) |
| 28 | 27 | ralimdva | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) |
| 29 | 28 | ex | |- ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) ) |
| 30 | 29 | com23 | |- ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) -> ( A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) -> ( A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) ) |
| 31 | 30 | 3imp | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) |
| 32 | 2 | fvexi | |- V e. _V |
| 33 | 32 | a1i | |- ( F : V -1-1-onto-> W -> V e. _V ) |
| 34 | 12 33 | fexd | |- ( F : V -1-1-onto-> W -> F e. _V ) |
| 35 | 34 | 3anim3i | |- ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) -> ( G e. USGraph /\ H e. USGraph /\ F e. _V ) ) |
| 36 | 35 | 3ad2ant1 | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> ( G e. USGraph /\ H e. USGraph /\ F e. _V ) ) |
| 37 | 2 3 | isgrlim | |- ( ( G e. USGraph /\ H e. USGraph /\ F e. _V ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) ) |
| 38 | 36 37 | syl | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` x ) ) ) ) ) ) |
| 39 | 4 31 38 | mpbir2and | |- ( ( ( G e. USGraph /\ H e. USGraph /\ F : V -1-1-onto-> W ) /\ A. x e. V ( G ISubGr ( G ClNeighbVtx x ) ) ~=gr ( StarGr ` N ) /\ A. y e. W ( H ISubGr ( H ClNeighbVtx y ) ) ~=gr ( StarGr ` N ) ) -> F e. ( G GraphLocIso H ) ) |