This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvz.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| clmvz.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmvz.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | clmvz | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 0 − 𝐴 ) = ( - 1 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvz.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 3 | clmvz.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | clmvz.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) | |
| 6 | clmgrp | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp ) | |
| 7 | 1 4 | grpidcl | ⊢ ( 𝑊 ∈ Grp → 0 ∈ 𝑉 ) |
| 8 | 6 7 | syl | ⊢ ( 𝑊 ∈ ℂMod → 0 ∈ 𝑉 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
| 10 | simpr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 13 | 1 11 2 12 3 | clmvsubval2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 0 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 0 − 𝐴 ) = ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) ) |
| 14 | 5 9 10 13 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 0 − 𝐴 ) = ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) ) |
| 15 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 16 | 12 15 | clmneg1 | ⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 18 | 1 12 3 15 | clmvscl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · 𝐴 ) ∈ 𝑉 ) |
| 19 | 5 17 10 18 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · 𝐴 ) ∈ 𝑉 ) |
| 20 | 1 11 4 | grprid | ⊢ ( ( 𝑊 ∈ Grp ∧ ( - 1 · 𝐴 ) ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) = ( - 1 · 𝐴 ) ) |
| 21 | 6 19 20 | syl2an2r | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) ( +g ‘ 𝑊 ) 0 ) = ( - 1 · 𝐴 ) ) |
| 22 | 14 21 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 0 − 𝐴 ) = ( - 1 · 𝐴 ) ) |