This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvsubval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvsubval.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| clmvsubval.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| clmvsubval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvsubval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | clmvsubval2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( ( - 1 · 𝐵 ) + 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvsubval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvsubval.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | clmvsubval.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | clmvsubval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | clmvsubval.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | 1 2 3 4 5 | clmvsubval | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| 7 | clmabl | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ Abel ) |
| 9 | simp2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 10 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 12 | 4 11 | clmneg1 | ⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ 𝐹 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ 𝐹 ) ) |
| 14 | simpr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 15 | 1 4 5 11 | clmvscl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ 𝐹 ) ∧ 𝐵 ∈ 𝑉 ) → ( - 1 · 𝐵 ) ∈ 𝑉 ) |
| 16 | 10 13 14 15 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( - 1 · 𝐵 ) ∈ 𝑉 ) |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( - 1 · 𝐵 ) ∈ 𝑉 ) |
| 18 | 1 2 | ablcom | ⊢ ( ( 𝑊 ∈ Abel ∧ 𝐴 ∈ 𝑉 ∧ ( - 1 · 𝐵 ) ∈ 𝑉 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( ( - 1 · 𝐵 ) + 𝐴 ) ) |
| 19 | 8 9 17 18 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + ( - 1 · 𝐵 ) ) = ( ( - 1 · 𝐵 ) + 𝐴 ) ) |
| 20 | 6 19 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) = ( ( - 1 · 𝐵 ) + 𝐴 ) ) |