This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns an arbitrary abelian group into a subcomplex module. (Contributed by Mario Carneiro, 30-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmclm.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| Assertion | zlmclm | ⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmclm.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | 1 | zlmlmod | ⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |
| 3 | 2 | biimpi | ⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ LMod ) |
| 4 | 1 | zlmsca | ⊢ ( 𝐺 ∈ Abel → ℤring = ( Scalar ‘ 𝑊 ) ) |
| 5 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 6 | 4 5 | eqtr3di | ⊢ ( 𝐺 ∈ Abel → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ℤ ) ) |
| 7 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 8 | 7 | a1i | ⊢ ( 𝐺 ∈ Abel → ℤ ∈ ( SubRing ‘ ℂfld ) ) |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 10 | 9 | isclmi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ℤ ) ∧ ℤ ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod ) |
| 11 | 3 6 8 10 | syl3anc | ⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ ℂMod ) |
| 12 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 13 | 12 2 | sylibr | ⊢ ( 𝑊 ∈ ℂMod → 𝐺 ∈ Abel ) |
| 14 | 11 13 | impbii | ⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ ℂMod ) |