This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvz.v | |- V = ( Base ` W ) |
|
| clmvz.m | |- .- = ( -g ` W ) |
||
| clmvz.s | |- .x. = ( .s ` W ) |
||
| clmvz.0 | |- .0. = ( 0g ` W ) |
||
| Assertion | clmvz | |- ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( -u 1 .x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvz.v | |- V = ( Base ` W ) |
|
| 2 | clmvz.m | |- .- = ( -g ` W ) |
|
| 3 | clmvz.s | |- .x. = ( .s ` W ) |
|
| 4 | clmvz.0 | |- .0. = ( 0g ` W ) |
|
| 5 | simpl | |- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
|
| 6 | clmgrp | |- ( W e. CMod -> W e. Grp ) |
|
| 7 | 1 4 | grpidcl | |- ( W e. Grp -> .0. e. V ) |
| 8 | 6 7 | syl | |- ( W e. CMod -> .0. e. V ) |
| 9 | 8 | adantr | |- ( ( W e. CMod /\ A e. V ) -> .0. e. V ) |
| 10 | simpr | |- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
|
| 11 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 12 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 13 | 1 11 2 12 3 | clmvsubval2 | |- ( ( W e. CMod /\ .0. e. V /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) |
| 14 | 5 9 10 13 | syl3anc | |- ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( ( -u 1 .x. A ) ( +g ` W ) .0. ) ) |
| 15 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 16 | 12 15 | clmneg1 | |- ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 17 | 16 | adantr | |- ( ( W e. CMod /\ A e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 18 | 1 12 3 15 | clmvscl | |- ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
| 19 | 5 17 10 18 | syl3anc | |- ( ( W e. CMod /\ A e. V ) -> ( -u 1 .x. A ) e. V ) |
| 20 | 1 11 4 | grprid | |- ( ( W e. Grp /\ ( -u 1 .x. A ) e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) |
| 21 | 6 19 20 | syl2an2r | |- ( ( W e. CMod /\ A e. V ) -> ( ( -u 1 .x. A ) ( +g ` W ) .0. ) = ( -u 1 .x. A ) ) |
| 22 | 14 21 | eqtrd | |- ( ( W e. CMod /\ A e. V ) -> ( .0. .- A ) = ( -u 1 .x. A ) ) |