This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmneg | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → - 𝐴 = ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | clmsca | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑊 ∈ ℂMod → ( invg ‘ 𝐹 ) = ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( invg ‘ 𝐹 ) = ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 6 | 5 | fveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
| 7 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 8 | subrgsubg | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
| 10 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 11 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 12 | eqid | ⊢ ( invg ‘ ( ℂfld ↾s 𝐾 ) ) = ( invg ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 13 | 10 11 12 | subginv | ⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
| 14 | 9 13 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = ( ( invg ‘ ( ℂfld ↾s 𝐾 ) ) ‘ 𝐴 ) ) |
| 15 | 1 2 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 16 | 15 | sselda | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ℂ ) |
| 17 | cnfldneg | ⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
| 19 | 6 14 18 | 3eqtr2rd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ) → - 𝐴 = ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) |