This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of Gleason p. 172. (Contributed by NM, 10-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climshft2.1 | ||
| climshft2.2 | |||
| climrecl.3 | |||
| climrecl.4 | |||
| Assertion | climrecl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | ||
| 2 | climshft2.2 | ||
| 3 | climrecl.3 | ||
| 4 | climrecl.4 | ||
| 5 | 1 | uzsup | |
| 6 | 2 5 | syl | |
| 7 | climrel | ||
| 8 | 7 | brrelex1i | |
| 9 | 3 8 | syl | |
| 10 | eqid | ||
| 11 | 1 10 | climmpt | |
| 12 | 2 9 11 | syl2anc | |
| 13 | 3 12 | mpbid | |
| 14 | 4 | recnd | |
| 15 | 14 | fmpttd | |
| 16 | 1 2 15 | rlimclim | |
| 17 | 13 16 | mpbird | |
| 18 | 6 17 4 | rlimrecl |