This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climshft2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climshft2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climrecl.3 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| climge0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climge0 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climshft2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climrecl.3 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 5 | climge0.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | 1 | uzsup | ⊢ ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 8 | climrel | ⊢ Rel ⇝ | |
| 9 | 8 | brrelex1i | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 11 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | |
| 12 | 1 11 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ V ) → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 13 | 2 10 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 14 | 3 13 | mpbid | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) |
| 15 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 | 15 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) |
| 17 | 1 2 16 | rlimclim | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ↔ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝ 𝐴 ) ) |
| 18 | 14 17 | mpbird | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ⇝𝑟 𝐴 ) |
| 19 | 7 18 4 5 | rlimge0 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |