This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cidffn | ⊢ Id Fn Cat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑏 ∈ V | |
| 2 | 1 | mptex | ⊢ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
| 3 | 2 | csbex | ⊢ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
| 4 | 3 | csbex | ⊢ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
| 5 | 4 | csbex | ⊢ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ∈ V |
| 6 | df-cid | ⊢ Id = ( 𝑐 ∈ Cat ↦ ⦋ ( Base ‘ 𝑐 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑐 ) / ℎ ⦌ ⦋ ( comp ‘ 𝑐 ) / 𝑜 ⦌ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑔 ∈ ( 𝑥 ℎ 𝑥 ) ∀ 𝑦 ∈ 𝑏 ( ∀ 𝑓 ∈ ( 𝑦 ℎ 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 𝑜 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 𝑜 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) | |
| 7 | 5 6 | fnmpti | ⊢ Id Fn Cat |