This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicsym | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicrcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) | |
| 2 | ciclcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) | |
| 3 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) | |
| 6 | simpr | ⊢ ( ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
| 8 | simpl | ⊢ ( ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| 10 | 3 4 5 7 9 | cic | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ) |
| 11 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 12 | 4 11 5 7 9 3 | isoval | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) = dom ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) ) |
| 13 | 4 11 5 9 7 | invsym2 | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) = ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) ) |
| 14 | 13 | eqcomd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) = ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
| 15 | 14 | dmeqd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → dom ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) = dom ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
| 16 | df-rn | ⊢ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) = dom ◡ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) | |
| 17 | 15 16 | eqtr4di | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → dom ( 𝑅 ( Inv ‘ 𝐶 ) 𝑆 ) = ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
| 18 | 12 17 | eqtrd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) = ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
| 19 | 18 | eleq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ↔ 𝑓 ∈ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) ) |
| 20 | vex | ⊢ 𝑓 ∈ V | |
| 21 | elrng | ⊢ ( 𝑓 ∈ V → ( 𝑓 ∈ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ↔ ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ) ) | |
| 22 | 20 21 | mp1i | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ran ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ↔ ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ) ) |
| 23 | 19 22 | bitrd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ↔ ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ) ) |
| 24 | df-br | ⊢ ( 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ↔ 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) | |
| 25 | 24 | exbii | ⊢ ( ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 ↔ ∃ 𝑔 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
| 26 | vex | ⊢ 𝑔 ∈ V | |
| 27 | 26 20 | opeldm | ⊢ ( 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → 𝑔 ∈ dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
| 28 | 4 11 5 9 7 3 | isoval | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) = dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) = ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) |
| 30 | 29 | eleq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) ↔ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) ) |
| 31 | 5 | adantr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝐶 ∈ Cat ) |
| 32 | 9 | adantr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| 33 | 7 | adantr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
| 34 | simpr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) | |
| 35 | 3 4 31 32 33 34 | brcici | ⊢ ( ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) |
| 36 | 35 | ex | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑅 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 37 | 30 36 | sylbid | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ dom ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 38 | 27 37 | syl5com | ⊢ ( 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 39 | 38 | exlimiv | ⊢ ( ∃ 𝑔 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 40 | 39 | com12 | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑔 〈 𝑔 , 𝑓 〉 ∈ ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 41 | 25 40 | biimtrid | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑔 𝑔 ( 𝑆 ( Inv ‘ 𝐶 ) 𝑅 ) 𝑓 → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 42 | 23 41 | sylbid | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 43 | 42 | exlimdv | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 44 | 10 43 | sylbid | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 45 | 44 | impancom | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → ( ( 𝑆 ∈ ( Base ‘ 𝐶 ) ∧ 𝑅 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) ) |
| 46 | 1 2 45 | mp2and | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑅 ) |