This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicsym | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S ( ~=c ` C ) R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicrcl | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S e. ( Base ` C ) ) |
|
| 2 | ciclcl | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> R e. ( Base ` C ) ) |
|
| 3 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | simpl | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> C e. Cat ) |
|
| 6 | simpr | |- ( ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) -> R e. ( Base ` C ) ) |
|
| 7 | 6 | adantl | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> R e. ( Base ` C ) ) |
| 8 | simpl | |- ( ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) -> S e. ( Base ` C ) ) |
|
| 9 | 8 | adantl | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> S e. ( Base ` C ) ) |
| 10 | 3 4 5 7 9 | cic | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( ~=c ` C ) S <-> E. f f e. ( R ( Iso ` C ) S ) ) ) |
| 11 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 12 | 4 11 5 7 9 3 | isoval | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( Iso ` C ) S ) = dom ( R ( Inv ` C ) S ) ) |
| 13 | 4 11 5 9 7 | invsym2 | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> `' ( S ( Inv ` C ) R ) = ( R ( Inv ` C ) S ) ) |
| 14 | 13 | eqcomd | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( Inv ` C ) S ) = `' ( S ( Inv ` C ) R ) ) |
| 15 | 14 | dmeqd | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> dom ( R ( Inv ` C ) S ) = dom `' ( S ( Inv ` C ) R ) ) |
| 16 | df-rn | |- ran ( S ( Inv ` C ) R ) = dom `' ( S ( Inv ` C ) R ) |
|
| 17 | 15 16 | eqtr4di | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> dom ( R ( Inv ` C ) S ) = ran ( S ( Inv ` C ) R ) ) |
| 18 | 12 17 | eqtrd | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( Iso ` C ) S ) = ran ( S ( Inv ` C ) R ) ) |
| 19 | 18 | eleq2d | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ( R ( Iso ` C ) S ) <-> f e. ran ( S ( Inv ` C ) R ) ) ) |
| 20 | vex | |- f e. _V |
|
| 21 | elrng | |- ( f e. _V -> ( f e. ran ( S ( Inv ` C ) R ) <-> E. g g ( S ( Inv ` C ) R ) f ) ) |
|
| 22 | 20 21 | mp1i | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ran ( S ( Inv ` C ) R ) <-> E. g g ( S ( Inv ` C ) R ) f ) ) |
| 23 | 19 22 | bitrd | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ( R ( Iso ` C ) S ) <-> E. g g ( S ( Inv ` C ) R ) f ) ) |
| 24 | df-br | |- ( g ( S ( Inv ` C ) R ) f <-> <. g , f >. e. ( S ( Inv ` C ) R ) ) |
|
| 25 | 24 | exbii | |- ( E. g g ( S ( Inv ` C ) R ) f <-> E. g <. g , f >. e. ( S ( Inv ` C ) R ) ) |
| 26 | vex | |- g e. _V |
|
| 27 | 26 20 | opeldm | |- ( <. g , f >. e. ( S ( Inv ` C ) R ) -> g e. dom ( S ( Inv ` C ) R ) ) |
| 28 | 4 11 5 9 7 3 | isoval | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( S ( Iso ` C ) R ) = dom ( S ( Inv ` C ) R ) ) |
| 29 | 28 | eqcomd | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> dom ( S ( Inv ` C ) R ) = ( S ( Iso ` C ) R ) ) |
| 30 | 29 | eleq2d | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( g e. dom ( S ( Inv ` C ) R ) <-> g e. ( S ( Iso ` C ) R ) ) ) |
| 31 | 5 | adantr | |- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> C e. Cat ) |
| 32 | 9 | adantr | |- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> S e. ( Base ` C ) ) |
| 33 | 7 | adantr | |- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> R e. ( Base ` C ) ) |
| 34 | simpr | |- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> g e. ( S ( Iso ` C ) R ) ) |
|
| 35 | 3 4 31 32 33 34 | brcici | |- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> S ( ~=c ` C ) R ) |
| 36 | 35 | ex | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( g e. ( S ( Iso ` C ) R ) -> S ( ~=c ` C ) R ) ) |
| 37 | 30 36 | sylbid | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( g e. dom ( S ( Inv ` C ) R ) -> S ( ~=c ` C ) R ) ) |
| 38 | 27 37 | syl5com | |- ( <. g , f >. e. ( S ( Inv ` C ) R ) -> ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> S ( ~=c ` C ) R ) ) |
| 39 | 38 | exlimiv | |- ( E. g <. g , f >. e. ( S ( Inv ` C ) R ) -> ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> S ( ~=c ` C ) R ) ) |
| 40 | 39 | com12 | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( E. g <. g , f >. e. ( S ( Inv ` C ) R ) -> S ( ~=c ` C ) R ) ) |
| 41 | 25 40 | biimtrid | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( E. g g ( S ( Inv ` C ) R ) f -> S ( ~=c ` C ) R ) ) |
| 42 | 23 41 | sylbid | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ( R ( Iso ` C ) S ) -> S ( ~=c ` C ) R ) ) |
| 43 | 42 | exlimdv | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( E. f f e. ( R ( Iso ` C ) S ) -> S ( ~=c ` C ) R ) ) |
| 44 | 10 43 | sylbid | |- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( ~=c ` C ) S -> S ( ~=c ` C ) R ) ) |
| 45 | 44 | impancom | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> ( ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) -> S ( ~=c ` C ) R ) ) |
| 46 | 1 2 45 | mp2and | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S ( ~=c ` C ) R ) |