This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | invsym2 | ⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invfval.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | invfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | invss.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | invss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 7 | 1 2 3 5 4 6 | invss | ⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 8 | relxp | ⊢ Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) | |
| 9 | relss | ⊢ ( ( 𝑌 𝑁 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 𝑁 𝑋 ) ) ) | |
| 10 | 7 8 9 | mpisyl | ⊢ ( 𝜑 → Rel ( 𝑌 𝑁 𝑋 ) ) |
| 11 | relcnv | ⊢ Rel ◡ ( 𝑋 𝑁 𝑌 ) | |
| 12 | 10 11 | jctil | ⊢ ( 𝜑 → ( Rel ◡ ( 𝑋 𝑁 𝑌 ) ∧ Rel ( 𝑌 𝑁 𝑋 ) ) ) |
| 13 | 1 2 3 4 5 | invsym | ⊢ ( 𝜑 → ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ↔ 𝑔 ( 𝑌 𝑁 𝑋 ) 𝑓 ) ) |
| 14 | vex | ⊢ 𝑔 ∈ V | |
| 15 | vex | ⊢ 𝑓 ∈ V | |
| 16 | 14 15 | brcnv | ⊢ ( 𝑔 ◡ ( 𝑋 𝑁 𝑌 ) 𝑓 ↔ 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) |
| 17 | df-br | ⊢ ( 𝑔 ◡ ( 𝑋 𝑁 𝑌 ) 𝑓 ↔ 〈 𝑔 , 𝑓 〉 ∈ ◡ ( 𝑋 𝑁 𝑌 ) ) | |
| 18 | 16 17 | bitr3i | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ↔ 〈 𝑔 , 𝑓 〉 ∈ ◡ ( 𝑋 𝑁 𝑌 ) ) |
| 19 | df-br | ⊢ ( 𝑔 ( 𝑌 𝑁 𝑋 ) 𝑓 ↔ 〈 𝑔 , 𝑓 〉 ∈ ( 𝑌 𝑁 𝑋 ) ) | |
| 20 | 13 18 19 | 3bitr3g | ⊢ ( 𝜑 → ( 〈 𝑔 , 𝑓 〉 ∈ ◡ ( 𝑋 𝑁 𝑌 ) ↔ 〈 𝑔 , 𝑓 〉 ∈ ( 𝑌 𝑁 𝑋 ) ) ) |
| 21 | 20 | eqrelrdv2 | ⊢ ( ( ( Rel ◡ ( 𝑋 𝑁 𝑌 ) ∧ Rel ( 𝑌 𝑁 𝑋 ) ) ∧ 𝜑 ) → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
| 22 | 12 21 | mpancom | ⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |