This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism implies the right side is an object. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicrcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicfval | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) | |
| 2 | 1 | breqd | ⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ) ) |
| 3 | isofn | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 4 | fvexd | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) ∈ V ) | |
| 5 | 0ex | ⊢ ∅ ∈ V | |
| 6 | 5 | a1i | ⊢ ( 𝐶 ∈ Cat → ∅ ∈ V ) |
| 7 | df-br | ⊢ ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ) | |
| 8 | elsuppfng | ⊢ ( ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( Iso ‘ 𝐶 ) ∈ V ∧ ∅ ∈ V ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Iso ‘ 𝐶 ) supp ∅ ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) ) ) | |
| 9 | 7 8 | bitrid | ⊢ ( ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( Iso ‘ 𝐶 ) ∈ V ∧ ∅ ∈ V ) → ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) ) ) |
| 10 | 3 4 6 9 | syl3anc | ⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) ) ) |
| 11 | opelxp2 | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 〈 𝑅 , 𝑆 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑅 , 𝑆 〉 ) ≠ ∅ ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 10 12 | biimtrdi | ⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ( Iso ‘ 𝐶 ) supp ∅ ) 𝑆 → 𝑆 ∈ ( Base ‘ 𝐶 ) ) ) |
| 14 | 2 13 | sylbid | ⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑆 ∈ ( Base ‘ 𝐶 ) ) ) |
| 15 | 14 | imp | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |