This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicer | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) Er ( Base ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } | |
| 2 | 1 | a1i | ⊢ ( 𝐶 ∈ Cat → Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } ) |
| 3 | fveq2 | ⊢ ( 𝑓 = 〈 𝑥 , 𝑦 〉 → ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) = ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 4 | 3 | neeq1d | ⊢ ( 𝑓 = 〈 𝑥 , 𝑦 〉 → ( ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ ↔ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) ) |
| 5 | 4 | rabxp | ⊢ { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } |
| 6 | 5 | a1i | ⊢ ( 𝐶 ∈ Cat → { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } ) |
| 7 | 6 | releqd | ⊢ ( 𝐶 ∈ Cat → ( Rel { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ↔ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ( Iso ‘ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ≠ ∅ ) } ) ) |
| 8 | 2 7 | mpbird | ⊢ ( 𝐶 ∈ Cat → Rel { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) |
| 9 | isofn | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 10 | fvex | ⊢ ( Base ‘ 𝐶 ) ∈ V | |
| 11 | sqxpexg | ⊢ ( ( Base ‘ 𝐶 ) ∈ V → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ) | |
| 12 | 10 11 | mp1i | ⊢ ( 𝐶 ∈ Cat → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ) |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | 13 | a1i | ⊢ ( 𝐶 ∈ Cat → ∅ ∈ V ) |
| 15 | suppvalfn | ⊢ ( ( ( Iso ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V ∧ ∅ ∈ V ) → ( ( Iso ‘ 𝐶 ) supp ∅ ) = { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) | |
| 16 | 9 12 14 15 | syl3anc | ⊢ ( 𝐶 ∈ Cat → ( ( Iso ‘ 𝐶 ) supp ∅ ) = { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) |
| 17 | 16 | releqd | ⊢ ( 𝐶 ∈ Cat → ( Rel ( ( Iso ‘ 𝐶 ) supp ∅ ) ↔ Rel { 𝑓 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∣ ( ( Iso ‘ 𝐶 ) ‘ 𝑓 ) ≠ ∅ } ) ) |
| 18 | 8 17 | mpbird | ⊢ ( 𝐶 ∈ Cat → Rel ( ( Iso ‘ 𝐶 ) supp ∅ ) ) |
| 19 | cicfval | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) = ( ( Iso ‘ 𝐶 ) supp ∅ ) ) | |
| 20 | 19 | releqd | ⊢ ( 𝐶 ∈ Cat → ( Rel ( ≃𝑐 ‘ 𝐶 ) ↔ Rel ( ( Iso ‘ 𝐶 ) supp ∅ ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( 𝐶 ∈ Cat → Rel ( ≃𝑐 ‘ 𝐶 ) ) |
| 22 | cicsym | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ) → 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) | |
| 23 | cictr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) | |
| 24 | 23 | 3expb | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) |
| 25 | cicref | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) | |
| 26 | ciclcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 27 | 25 26 | impbida | ⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↔ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) ) |
| 28 | 21 22 24 27 | iserd | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) Er ( Base ‘ 𝐶 ) ) |