This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class abstraction restricted to a Cartesian product as an ordered-pair class abstraction. (Contributed by NM, 20-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabxp.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | rabxp | ⊢ { 𝑥 ∈ ( 𝐴 × 𝐵 ) ∣ 𝜑 } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabxp.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elxp | ⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝜑 ) ) |
| 4 | 19.41vv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝜑 ) ) | |
| 5 | anass | ⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝜑 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝜑 ) ) ) | |
| 6 | 1 | anbi2d | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝜓 ) ) ) |
| 7 | df-3an | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝜓 ) ) | |
| 8 | 6 7 | bitr4di | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 9 | 8 | pm5.32i | ⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝜑 ) ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 10 | 5 9 | bitri | ⊢ ( ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝜑 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 11 | 10 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 12 | 3 4 11 | 3bitr2i | ⊢ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 13 | 12 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } = { 𝑥 ∣ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ) } |
| 14 | df-rab | ⊢ { 𝑥 ∈ ( 𝐴 × 𝐵 ) ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝜑 ) } | |
| 15 | df-opab | ⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) } = { 𝑥 ∣ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) ) } | |
| 16 | 13 14 15 | 3eqtr4i | ⊢ { 𝑥 ∈ ( 𝐴 × 𝐵 ) ∣ 𝜑 } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ∧ 𝜓 ) } |