This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicer | |- ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv | |- Rel { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } |
|
| 2 | 1 | a1i | |- ( C e. Cat -> Rel { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } ) |
| 3 | fveq2 | |- ( f = <. x , y >. -> ( ( Iso ` C ) ` f ) = ( ( Iso ` C ) ` <. x , y >. ) ) |
|
| 4 | 3 | neeq1d | |- ( f = <. x , y >. -> ( ( ( Iso ` C ) ` f ) =/= (/) <-> ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) ) |
| 5 | 4 | rabxp | |- { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } = { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } |
| 6 | 5 | a1i | |- ( C e. Cat -> { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } = { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } ) |
| 7 | 6 | releqd | |- ( C e. Cat -> ( Rel { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } <-> Rel { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } ) ) |
| 8 | 2 7 | mpbird | |- ( C e. Cat -> Rel { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) |
| 9 | isofn | |- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
|
| 10 | fvex | |- ( Base ` C ) e. _V |
|
| 11 | sqxpexg | |- ( ( Base ` C ) e. _V -> ( ( Base ` C ) X. ( Base ` C ) ) e. _V ) |
|
| 12 | 10 11 | mp1i | |- ( C e. Cat -> ( ( Base ` C ) X. ( Base ` C ) ) e. _V ) |
| 13 | 0ex | |- (/) e. _V |
|
| 14 | 13 | a1i | |- ( C e. Cat -> (/) e. _V ) |
| 15 | suppvalfn | |- ( ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Base ` C ) X. ( Base ` C ) ) e. _V /\ (/) e. _V ) -> ( ( Iso ` C ) supp (/) ) = { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) |
|
| 16 | 9 12 14 15 | syl3anc | |- ( C e. Cat -> ( ( Iso ` C ) supp (/) ) = { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) |
| 17 | 16 | releqd | |- ( C e. Cat -> ( Rel ( ( Iso ` C ) supp (/) ) <-> Rel { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) ) |
| 18 | 8 17 | mpbird | |- ( C e. Cat -> Rel ( ( Iso ` C ) supp (/) ) ) |
| 19 | cicfval | |- ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) |
|
| 20 | 19 | releqd | |- ( C e. Cat -> ( Rel ( ~=c ` C ) <-> Rel ( ( Iso ` C ) supp (/) ) ) ) |
| 21 | 18 20 | mpbird | |- ( C e. Cat -> Rel ( ~=c ` C ) ) |
| 22 | cicsym | |- ( ( C e. Cat /\ x ( ~=c ` C ) y ) -> y ( ~=c ` C ) x ) |
|
| 23 | cictr | |- ( ( C e. Cat /\ x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) -> x ( ~=c ` C ) z ) |
|
| 24 | 23 | 3expb | |- ( ( C e. Cat /\ ( x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) ) -> x ( ~=c ` C ) z ) |
| 25 | cicref | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> x ( ~=c ` C ) x ) |
|
| 26 | ciclcl | |- ( ( C e. Cat /\ x ( ~=c ` C ) x ) -> x e. ( Base ` C ) ) |
|
| 27 | 25 26 | impbida | |- ( C e. Cat -> ( x e. ( Base ` C ) <-> x ( ~=c ` C ) x ) ) |
| 28 | 21 22 24 27 | iserd | |- ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) ) |