This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chintcl.1 | ⊢ ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) | |
| Assertion | chintcli | ⊢ ∩ 𝐴 ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chintcl.1 | ⊢ ( 𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅ ) | |
| 2 | 1 | simpli | ⊢ 𝐴 ⊆ Cℋ |
| 3 | chsssh | ⊢ Cℋ ⊆ Sℋ | |
| 4 | 2 3 | sstri | ⊢ 𝐴 ⊆ Sℋ |
| 5 | 1 | simpri | ⊢ 𝐴 ≠ ∅ |
| 6 | 4 5 | pm3.2i | ⊢ ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) |
| 7 | 6 | shintcli | ⊢ ∩ 𝐴 ∈ Sℋ |
| 8 | 2 | sseli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ Cℋ ) |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | 9 | chlimi | ⊢ ( ( 𝑦 ∈ Cℋ ∧ 𝑓 : ℕ ⟶ 𝑦 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝑦 ) |
| 11 | 10 | 3exp | ⊢ ( 𝑦 ∈ Cℋ → ( 𝑓 : ℕ ⟶ 𝑦 → ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝑦 ) ) ) |
| 12 | 11 | com3r | ⊢ ( 𝑓 ⇝𝑣 𝑥 → ( 𝑦 ∈ Cℋ → ( 𝑓 : ℕ ⟶ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
| 13 | 8 12 | syl5 | ⊢ ( 𝑓 ⇝𝑣 𝑥 → ( 𝑦 ∈ 𝐴 → ( 𝑓 : ℕ ⟶ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑓 ⇝𝑣 𝑥 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 : ℕ ⟶ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 15 | 14 | ralimdva | ⊢ ( 𝑓 ⇝𝑣 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑓 : ℕ ⟶ 𝑦 → ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) ) |
| 16 | 5 | fint | ⊢ ( 𝑓 : ℕ ⟶ ∩ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 𝑓 : ℕ ⟶ 𝑦 ) |
| 17 | 9 | elint2 | ⊢ ( 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
| 18 | 15 16 17 | 3imtr4g | ⊢ ( 𝑓 ⇝𝑣 𝑥 → ( 𝑓 : ℕ ⟶ ∩ 𝐴 → 𝑥 ∈ ∩ 𝐴 ) ) |
| 19 | 18 | impcom | ⊢ ( ( 𝑓 : ℕ ⟶ ∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ∩ 𝐴 ) |
| 20 | 19 | gen2 | ⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ∩ 𝐴 ) |
| 21 | isch2 | ⊢ ( ∩ 𝐴 ∈ Cℋ ↔ ( ∩ 𝐴 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ∩ 𝐴 ) ) ) | |
| 22 | 7 20 21 | mpbir2an | ⊢ ∩ 𝐴 ∈ Cℋ |