This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chintcl.1 | |- ( A C_ CH /\ A =/= (/) ) |
|
| Assertion | chintcli | |- |^| A e. CH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chintcl.1 | |- ( A C_ CH /\ A =/= (/) ) |
|
| 2 | 1 | simpli | |- A C_ CH |
| 3 | chsssh | |- CH C_ SH |
|
| 4 | 2 3 | sstri | |- A C_ SH |
| 5 | 1 | simpri | |- A =/= (/) |
| 6 | 4 5 | pm3.2i | |- ( A C_ SH /\ A =/= (/) ) |
| 7 | 6 | shintcli | |- |^| A e. SH |
| 8 | 2 | sseli | |- ( y e. A -> y e. CH ) |
| 9 | vex | |- x e. _V |
|
| 10 | 9 | chlimi | |- ( ( y e. CH /\ f : NN --> y /\ f ~~>v x ) -> x e. y ) |
| 11 | 10 | 3exp | |- ( y e. CH -> ( f : NN --> y -> ( f ~~>v x -> x e. y ) ) ) |
| 12 | 11 | com3r | |- ( f ~~>v x -> ( y e. CH -> ( f : NN --> y -> x e. y ) ) ) |
| 13 | 8 12 | syl5 | |- ( f ~~>v x -> ( y e. A -> ( f : NN --> y -> x e. y ) ) ) |
| 14 | 13 | imp | |- ( ( f ~~>v x /\ y e. A ) -> ( f : NN --> y -> x e. y ) ) |
| 15 | 14 | ralimdva | |- ( f ~~>v x -> ( A. y e. A f : NN --> y -> A. y e. A x e. y ) ) |
| 16 | 5 | fint | |- ( f : NN --> |^| A <-> A. y e. A f : NN --> y ) |
| 17 | 9 | elint2 | |- ( x e. |^| A <-> A. y e. A x e. y ) |
| 18 | 15 16 17 | 3imtr4g | |- ( f ~~>v x -> ( f : NN --> |^| A -> x e. |^| A ) ) |
| 19 | 18 | impcom | |- ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) |
| 20 | 19 | gen2 | |- A. f A. x ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) |
| 21 | isch2 | |- ( |^| A e. CH <-> ( |^| A e. SH /\ A. f A. x ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) ) ) |
|
| 22 | 7 20 21 | mpbir2an | |- |^| A e. CH |