This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of intersection of a nonempty subset of SH . (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shintcl.1 | ⊢ ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) | |
| Assertion | shintcli | ⊢ ∩ 𝐴 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shintcl.1 | ⊢ ( 𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅ ) | |
| 2 | 1 | simpri | ⊢ 𝐴 ≠ ∅ |
| 3 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 4 | intss1 | ⊢ ( 𝑧 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑧 ) | |
| 5 | 1 | simpli | ⊢ 𝐴 ⊆ Sℋ |
| 6 | 5 | sseli | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ Sℋ ) |
| 7 | shss | ⊢ ( 𝑧 ∈ Sℋ → 𝑧 ⊆ ℋ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ⊆ ℋ ) |
| 9 | 4 8 | sstrd | ⊢ ( 𝑧 ∈ 𝐴 → ∩ 𝐴 ⊆ ℋ ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∩ 𝐴 ⊆ ℋ ) |
| 11 | 3 10 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ℋ ) |
| 12 | 2 11 | ax-mp | ⊢ ∩ 𝐴 ⊆ ℋ |
| 13 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 14 | 13 | elexi | ⊢ 0ℎ ∈ V |
| 15 | 14 | elint2 | ⊢ ( 0ℎ ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 0ℎ ∈ 𝑧 ) |
| 16 | sh0 | ⊢ ( 𝑧 ∈ Sℋ → 0ℎ ∈ 𝑧 ) | |
| 17 | 6 16 | syl | ⊢ ( 𝑧 ∈ 𝐴 → 0ℎ ∈ 𝑧 ) |
| 18 | 15 17 | mprgbir | ⊢ 0ℎ ∈ ∩ 𝐴 |
| 19 | 12 18 | pm3.2i | ⊢ ( ∩ 𝐴 ⊆ ℋ ∧ 0ℎ ∈ ∩ 𝐴 ) |
| 20 | elinti | ⊢ ( 𝑥 ∈ ∩ 𝐴 → ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝑧 ) ) | |
| 21 | 20 | com12 | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ 𝑧 ) ) |
| 22 | elinti | ⊢ ( 𝑦 ∈ ∩ 𝐴 → ( 𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧 ) ) | |
| 23 | 22 | com12 | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝑦 ∈ ∩ 𝐴 → 𝑦 ∈ 𝑧 ) ) |
| 24 | shaddcl | ⊢ ( ( 𝑧 ∈ Sℋ ∧ 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) | |
| 25 | 6 24 | syl3an1 | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) |
| 26 | 25 | 3expib | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 27 | 21 23 26 | syl2and | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 28 | 27 | com12 | ⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 29 | 28 | ralrimiv | ⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) |
| 30 | ovex | ⊢ ( 𝑥 +ℎ 𝑦 ) ∈ V | |
| 31 | 30 | elint2 | ⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ 𝑧 ) |
| 32 | 29 31 | sylibr | ⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ) |
| 33 | 32 | rgen2 | ⊢ ∀ 𝑥 ∈ ∩ 𝐴 ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 |
| 34 | shmulcl | ⊢ ( ( 𝑧 ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) | |
| 35 | 6 34 | syl3an1 | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) |
| 36 | 35 | 3expib | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 37 | 23 36 | sylan2d | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 38 | 37 | com12 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) ) |
| 39 | 38 | ralrimiv | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) |
| 40 | ovex | ⊢ ( 𝑥 ·ℎ 𝑦 ) ∈ V | |
| 41 | 40 | elint2 | ⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝑧 ) |
| 42 | 39 41 | sylibr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ∩ 𝐴 ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ) |
| 43 | 42 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 |
| 44 | 33 43 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ ∩ 𝐴 ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ) |
| 45 | issh2 | ⊢ ( ∩ 𝐴 ∈ Sℋ ↔ ( ( ∩ 𝐴 ⊆ ℋ ∧ 0ℎ ∈ ∩ 𝐴 ) ∧ ( ∀ 𝑥 ∈ ∩ 𝐴 ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 +ℎ 𝑦 ) ∈ ∩ 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ∩ 𝐴 ( 𝑥 ·ℎ 𝑦 ) ∈ ∩ 𝐴 ) ) ) | |
| 46 | 19 44 45 | mpbir2an | ⊢ ∩ 𝐴 ∈ Sℋ |