This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cgsex4g as of 21-Mar-2025. (Contributed by NM, 5-Aug-1995) Avoid ax-10 , ax-11 . (Revised by GG, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsex4gOLD.1 | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → 𝜒 ) | |
| cgsex4gOLD.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cgsex4gOLD | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex4gOLD.1 | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → 𝜒 ) | |
| 2 | cgsex4gOLD.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | biimpa | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 4 | 3 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 5 | 4 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 6 | elisset | ⊢ ( 𝐴 ∈ 𝑅 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 7 | elisset | ⊢ ( 𝐵 ∈ 𝑆 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 8 | 6 7 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 9 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 11 | elisset | ⊢ ( 𝐶 ∈ 𝑅 → ∃ 𝑧 𝑧 = 𝐶 ) | |
| 12 | elisset | ⊢ ( 𝐷 ∈ 𝑆 → ∃ 𝑤 𝑤 = 𝐷 ) | |
| 13 | 11 12 | anim12i | ⊢ ( ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) → ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) |
| 14 | exdistrv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ↔ ( ∃ 𝑧 𝑧 = 𝐶 ∧ ∃ 𝑤 𝑤 = 𝐷 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) → ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) |
| 16 | 10 15 | anim12i | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 17 | eqeq1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 = 𝐵 ↔ 𝑣 = 𝐵 ) ) | |
| 18 | 17 | anbi2d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ) ) |
| 19 | 18 | anbi1d | ⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 20 | 19 | exbidv | ⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 21 | 20 | notbid | ⊢ ( 𝑦 = 𝑣 → ( ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑣 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 22 | eqeq1 | ⊢ ( 𝑧 = 𝑣 → ( 𝑧 = 𝐶 ↔ 𝑣 = 𝐶 ) ) | |
| 23 | 22 | anbi1d | ⊢ ( 𝑧 = 𝑣 → ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ↔ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 24 | 23 | anbi2d | ⊢ ( 𝑧 = 𝑣 → ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 25 | 24 | exbidv | ⊢ ( 𝑧 = 𝑣 → ( ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 26 | 25 | notbid | ⊢ ( 𝑧 = 𝑣 → ( ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑣 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) ) |
| 27 | 21 26 | alcomw | ⊢ ( ∀ 𝑦 ∀ 𝑧 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∀ 𝑧 ∀ 𝑦 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 28 | 27 | notbii | ⊢ ( ¬ ∀ 𝑦 ∀ 𝑧 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∀ 𝑧 ∀ 𝑦 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 29 | 2exnaln | ⊢ ( ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∀ 𝑦 ∀ 𝑧 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) | |
| 30 | 2exnaln | ⊢ ( ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ¬ ∀ 𝑧 ∀ 𝑦 ¬ ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) | |
| 31 | 28 29 30 | 3bitr4i | ⊢ ( ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 32 | 31 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ∃ 𝑥 ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 33 | 4exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) | |
| 34 | 32 33 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 35 | 16 34 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ) |
| 36 | 1 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 37 | 36 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 38 | 35 37 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) |
| 39 | 2 | biimprcd | ⊢ ( 𝜓 → ( 𝜒 → 𝜑 ) ) |
| 40 | 39 | ancld | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜒 ∧ 𝜑 ) ) ) |
| 41 | 40 | 2eximdv | ⊢ ( 𝜓 → ( ∃ 𝑧 ∃ 𝑤 𝜒 → ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 42 | 41 | 2eximdv | ⊢ ( 𝜓 → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 43 | 38 42 | syl5com | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ) ) |
| 44 | 5 43 | impbid2 | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ 𝑆 ) ) → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |